Разместить заказ
Вы будете перенаправлены на Автор24

Смежные и вертикальные углы

Начальные сведения об углах

Пусть нам даны два произвольных луча. Наложим их начала друг на друга. Тогда

Определение 1

Углом будем называть два луча, которые имеют одно и тоже начало.

Определение 2

Точка, которая является началом лучей в рамках определения 3, называется вершиной этого угла.

Угол будем обозначать следующими тремя её точками: вершиной, точкой на одном из лучей и точкой на другом луче, причем вершина угла записывается в середине его обозначения (рис. 1).

Угол BOC

Определим теперь, что такое величина угла.

Для этого необходимо выбрать какой-то «эталонный» угол, который мы будем принимать за единицу. Чаще всего таким углом является угол, который равен $\frac{1}{180}$ части развернутого угла. Такую величину называют градусом. После выбора такого угла мы проводим с ним сравнение углов, величину которого нужно найти.

Существуют 4 вида углов:

Определение 3

Угол называется острым, если он меньше $90^0$.

Определение 4

Угол называется тупым, если он больше $90^0$.

Определение 5

Угол называется развернутым, если он равен $180^0$.

Определение 6

Угол называется прямым, если он равен $90^0$.

Готовые работы на аналогичную тему

Помимо таких видов углов, которые описаны выше, можно выделять виды углов по отношению их друг к другу, а именно вертикальные и смежные углы.

Смежные углы

Рассмотрим развернутый угол $COB$. Из его вершины проведем луч $OA$. Этот луч разделит первоначальный на два угла. Тогда

Определение 7

Два угла будем называть смежными, если одна пара их сторон является развернутым углом, а другая пара совпадает (рис. 2).

В данном случае углы $COA$ и $BOA$ являются смежными.

Теорема 1

Сумма смежных углов равняется $180^0$.

Доказательство.

Рассмотрим рисунок 2.

По определению 7, в нем угол $COB$ будет равняться $180^0$. Так как вторая пара сторон смежных углов совпадает, то луч $OA$ будет разделять развернутый угол на 2, следовательно

$∠COA+∠BOA=180^0$

Теорема доказана.

Рассмотрим решение задачи с помощью данного понятия.

Пример 1

Найти угол $C$ из рисунка ниже

Решение.

По определению 7 получаем, что углы $BDA$ и $ADC$ являются смежными. Следовательно, по теореме 1, получим

$∠BDA+∠ADC=180^0$

$∠ADC=180^0-∠BDA=180〗0-59^0=121^0$

По теореме о сумме углов в треугольнике, будем иметь

$∠A+∠ADC+∠C=180^0$

$∠C=180^0-∠A-∠ADC=180^0-19^0-121^0=40^0$

Ответ: $40^0$.

Вертикальные углы

Рассмотрим развернутые углы $AOB$ и $MOC$. Совместим их вершины между собой (то есть наложим точку $O'$ на точку $O$) так, чтобы никакие стороны этих углов не совпали. Тогда

Определение 8

Два угла будем называть вертикальными, если пары их сторон являются развернутыми углами, а их величины совпадают (рис. 3).

В данном случае углы $MOA$ и $BOC$ являются вертикальными и углы $MOB$ и $AOC$ также вертикальные.

Теорема 2

Вертикальные углы равняются между собой.

Доказательство.

Рассмотрим рисунок 3. Докажем, к примеру, что угол $MOA$ равняется углу $BOC$.

По определению 7, видим, что углы $AOM$ и $MOB$, а также углы $COB$ и $MOB$ будет являться смежными. Обозначим угол $MOB$ через $β$. По теореме 1, получим

$∠AOM+β=180^0$

$∠AOM=180^0-β$

С другой стороны

$∠COB+β=180^0$

$∠COB=180^0-β$

Получаем, что

$∠AOM=∠COB$

Теорема доказана.

Рассмотрим решение задачи с помощью данного понятия.

Пример 2

Найти угол $COB$ из рисунка ниже

Решение.

По определению 8 получаем, что углы $AOD$ и $COB$ являются вертикальными. Следовательно, по теореме 2, получим

$∠COB=∠AOD=54^0$

Ответ: $54^0$.

Пример смешанной задачи

Пример 3

Найти угол $COB$ из рисунка ниже

Решение. По определению 8 получаем, что углы $FAO$ и $COD$ являются вертикальными. Следовательно, по теореме 2, получим

$∠FAO=∠COD=25^0$

По определению 7 получаем, что углы $BOF$ и $BOC$ являются смежными. Следовательно, по теореме 1, получим

$∠BOF+∠BOC=180^0$

$∠BOC=180^0-∠BOF=180^0-55^0-25^0=100^0$

Ответ: $100^0$.

Сообщество экспертов Автор24

Автор этой статьи

Автор статьи

Эксперт по предмету «Математика»

Статья предоставлена специалистами сервиса Автор24
Автор24 - это сообщество учителей и преподавателей, к которым можно обратиться за помощью с выполнением учебных работ.
как работает сервис