Разместить заказ
Вы будете перенаправлены на Автор24

Как найти координаты вектора

8-800-775-03-30 support@author24.ru
Содержание статьи

Предварительные сведения

Здесь мы ограничимся двумерным случаем. Введение понятия для трехмерного случая проводится аналогично. Для того, чтобы ввести понятие координат вектора сначала введем и докажем следующие лемму и теорему.

Лемма 1: Если векторы $\overrightarrow{a}$ и $\overrightarrow{b}$ коллинеарны, и вектор $\overrightarrow{a}$ не является нулевым, то существует действительное число $k$, такое что выполняется равенство$\overrightarrow{b}=k\overrightarrow{a}$

Доказательство.

Возможны два случая:

  1. $\overrightarrow{a}\uparrow \uparrow \overrightarrow{b}$

    Обозначим число $k$ следующим образом: $k=\frac{|\overrightarrow{b}|}{|\overrightarrow{a}|}$. Так как векторы $\overrightarrow{a}$ и $\overrightarrow{b}$ сонаправлены, а $k\ge 0$, то векторы $k\overrightarrow{a}$ и $\overrightarrow{b}$ сонаправлены. Далее, имеем, что

    \[\left|k\overrightarrow{a}\right|=\left|k\right|\left|\overrightarrow{a}\right|=\frac{|\overrightarrow{b}|}{|\overrightarrow{a}|}\left|\overrightarrow{a}\right|=|\overrightarrow{b}|\]

    Из этого всего следует, что $\overrightarrow{b}=k\overrightarrow{a}$.

  2. $\overrightarrow{a}\uparrow \downarrow \overrightarrow{b}$

    Обозначим число $k$ следующим образом: $k=-\frac{|\overrightarrow{b}|}{|\overrightarrow{a}|}$. Так как векторы $\overrightarrow{a}$ и $\overrightarrow{b}$ противоположно направленные, а $k \[\left|k\overrightarrow{a}\right|=\left|k\right|\left|\overrightarrow{a}\right|=\frac{|\overrightarrow{b}|}{|\overrightarrow{a}|}\left|\overrightarrow{a}\right|=|\overrightarrow{b}|\]

    Из этого всего следует, что $\overrightarrow{b}=k\overrightarrow{a}$.

Лемма доказана.

Теорема 1

Любой вектор можно разложить по двум неколлинеарным векторам, причем коэффициенты разложения определяются единственным образом:

\[\overrightarrow{c}=m\overrightarrow{a}+n\overrightarrow{b}\]

Доказательство.

Существование: Докажем, что такое разложение имеет место. Здесь возможны два случая:

  1. Вектор $\overrightarrow{c}$ коллинеарен (к примеру) вектору $\overrightarrow{b}$.

    По лемме 1, будем иметь

    \[\overrightarrow{c}=n\overrightarrow{b}\]

    Значит, если число $m=0$, то получим

    \[\overrightarrow{c}=m\overrightarrow{a}+n\overrightarrow{b}\]
  2. Вектор $\overrightarrow{c}$ не коллинеарен векторам $\overrightarrow{a}$ и $\overrightarrow{b}$.

    Возьмем произвольную точку $O$ и отложим от нее векторы $\overrightarrow{OB}=\overrightarrow{b},\ \overrightarrow{OA}=\overrightarrow{a}$ и $\overrightarrow{OC}=\overrightarrow{c}$. Пусть Проведем прямую $CD||OB$ (рис. 1)

    Иллюстрация теоремы 1

    Рисунок 1. Иллюстрация теоремы 1

    По правилу треугольника для сложения векторов, получим

    \[\overrightarrow{c}=\overrightarrow{OD}+\overrightarrow{DC}\]

    По построению, получаем что векторы $\overrightarrow{OD}||\overrightarrow{a}$ и $\overrightarrow{DC}||\overrightarrow{b}$, следовательно, по лемме 1, имеем

    \[\overrightarrow{OD}=m\overrightarrow{a},\ \overrightarrow{DC}=n\overrightarrow{b}\]

    Значит

    \[\overrightarrow{c}=m\overrightarrow{a}+n\overrightarrow{b}\]

Готовые работы на аналогичную тему

Единственность: Предположим противное, что помимо разложения$\overrightarrow{c}=m\overrightarrow{a}+n\overrightarrow{b}$ существует разложение $\overrightarrow{c}=m'\overrightarrow{a}+n'\overrightarrow{b}$. Вычтем эти два равенства из друг друга:

Получаем систему:



Рисунок 2.

Следовательно, разложение единственно.

Теорема доказана.

Координаты вектора

Рассмотрим далее систему координат. От начала координат $O$ в направлении оси $Ox$ отложим вектор $\overrightarrow{i}$, а в направлении оси $Oy$ отложим вектор $\overrightarrow{j}$, длины которых равны единице.

Определение 1

Векторы $\overrightarrow{i}$ и $\overrightarrow{j}$ называются координатными векторами.

Так как векторы $\overrightarrow{i}$ и $\overrightarrow{j}$ не коллинеарны то, по теореме 1, любой вектор можно разложить в виде $\overrightarrow{c}=m\overrightarrow{i}+n\overrightarrow{j}$.

Определение 2

Коэффициенты разложения вектора $\overrightarrow{c}=m\overrightarrow{i}+n\overrightarrow{j}$ называются координатами данного вектора в данной системе координат, то есть

\[\overrightarrow{c}=\{m,\ n\}\]

Линейные операции над векторами

Теорема 2

Теорема о сумме векторов: Координаты суммы векторов равны сумме соответствующих координат этих векторов.

Доказательство.

Докажем теорему для двух векторов. Теорема для большего количества векторов доказывается аналогично. Пусть $\overrightarrow{a}=\left\{x_1,\ y_1\right\}$, $\overrightarrow{b}=\{x_2,\ y_2\}$, тогда

Следовательно

Теорема доказана.

Теорема 3

Теорема о разности векторов: Координаты разности векторов равны разности соответствующих координат этих векторов.

Доказательство.

Докажем теорему для двух векторов. Теорема для большего количества векторов доказывается аналогично. Пусть $\overrightarrow{a}=\left\{x_1,\ y_1\right\}$, $\overrightarrow{b}=\{x_2,\ y_2\}$, тогда

Следовательно

Теорема доказана.

Теорема 4

Теорема о произведении вектора на число: Координаты произведения вектора на число равны произведению соответствующих координат это число.

Доказательство.

Пусть $\overrightarrow{a}=\left\{x,\ y\right\}$, тогда $\overrightarrow{a}=x\overrightarrow{i}+\ y\overrightarrow{j}.$

Следовательно

Теорема доказана.

Пример задачи на нахождение координат вектора

Пример 1

Пусть $\overrightarrow{a}=\left\{3,\ 4\right\}$, $\overrightarrow{b}=\{2,\ -1\}$. Найти $\overrightarrow{a}+\overrightarrow{b}$, $\overrightarrow{a}-\overrightarrow{b}$ и $3\overrightarrow{a}$.

Решение.

\[\overrightarrow{a}+\overrightarrow{b}=\left\{3+2,\ 4-1\right\}=\{5,\ 3\}\] \[\overrightarrow{a}-\overrightarrow{b}=\left\{3-2,\ 4+1\right\}=\{1,\ 5\}\] \[3\overrightarrow{a}=\left\{3\cdot 3,3\cdot 4\right\}=\{9,12\}\]
Сообщество экспертов Автор24

Автор этой статьи

Автор статьи

оксана николаевна кузнецова

Эксперт по предмету «Математика»

Статья предоставлена специалистами сервиса Автор24
Автор24 - это сообщество учителей и преподавателей, к которым можно обратиться за помощью с выполнением учебных работ.
как работает сервис