Формула производной от дроби
Раздел о производных является отдельным самостоятельным разделом в математическом анализе. Условимся, что читателю известно понятия предела, производной, дифференциала, а также ряд свойств производной.
В данной статье рассмотрим одно из свойств производной, а именно формулу производной от дроби. Приведём эту формулу. Пусть функция $v(x)$ имеет производную в точке $x$ и $v(x)\neq0$, тогда:
$(\frac{u}{v})'=\frac{u'v-uv'}{v^2}.$
Напомним формулы производных элементарных функций:
Рисунок 1. Формулы производных элементарных функций. Автор24 — интернет-биржа студенческих работ
Примеры
Решим примеры. Преобразования, позволяющие применить другие свойства производной, мы применять не будем. В решениях будем использовать только формулу производной от дроби.
По условию даются функции. Нужно найти производные.
Рисунок 2. Пример. Автор24 — интернет-биржа студенческих работ
Рисунок 3. Пример. Автор24 — интернет-биржа студенческих работ
Рисунок 4. Пример. Автор24 — интернет-биржа студенческих работ
Рисунок 5. Пример. Автор24 — интернет-биржа студенческих работ
Рисунок 6. Пример. Автор24 — интернет-биржа студенческих работ
Рисунок 7. Пример. Автор24 — интернет-биржа студенческих работ
Рисунок 8. Пример. Автор24 — интернет-биржа студенческих работ
Рисунок 9. Пример. Автор24 — интернет-биржа студенческих работ
Рисунок 10. Пример. Автор24 — интернет-биржа студенческих работ
Рисунок 11.
Рисунок 12. Пример. Автор24 — интернет-биржа студенческих работ