Разместить заказ
Вы будете перенаправлены на Автор24

Смешанные дроби

Определение смешанной дроби

В математике сумму $n+\frac{a}{b}$, где $n$ -натуральное число, $\frac{a}{b}$ -- правильная обыкновенная дробь, принято записывать без знака $«+»$ в виде $n\frac{a}{b}$.

Пример 1

Например, сумма $4+\frac{3}{5}$ записывается $4\frac{3}{5}$. Такая запись называется смешанной дробью, а число, которое ей соответствует, -- смешанным числом.

Определение 1

Смешанное число -- это число, которое равно сумме натурального числа $n$ и правильной обыкновенной дроби $\frac{a}{b}$, и записано в виде $n\frac{a}{b}$. В таком случае число $n$ называется $n\frac{a}{b}$, а число $\frac{a}{b}$ -- дробной частью числа/

Для смешанных чисел справедливы равенства $n\frac{a}{b}=n+\frac{a}{b}$ и $n+\frac{a}{b}=n\frac{a}{b}$.

Пример 2

Например, число $7\frac{4}{9}$ является смешанным числом, где натуральное число $7$ -- целая его часть, $\frac{4}{9}$ -- дробная часть. Примеры смешанных чисел: $17\frac{1}{2}$, $456\frac{111}{500}$, $23000\frac{4}{5}$.

Встречаются числа в смешанной записи, которые в дробной части содержат неправильную дробь. Например, $3\frac{54}{5}$, $56\frac{9}{2}$. Запись этих чисел можно представить в виде суммы их целой и дробной части. Например, $3\frac{54}{5}=3+\frac{54}{5}$ и $56\frac{9}{2}=56+\frac{9}{2}$. Такие числа не подходят по определению смешанного числа, т.к. дробная часть смешанных чисел должна быть правильной дробью.

Число $0\frac{2}{7}$ также не смешанное число, т.к. $0$ - не натуральное число.

Перевод смешанного числа в неправильную дробь

Алгоритм перевода смешанного числа в неправильную дробь:

Готовые работы на аналогичную тему

  1. Записать смешанное число $n\frac{a}{b}$ в виде суммы целой и дробной части этого числа, т.е. в виде $n+\frac{a}{b}$.

  2. Целую часть исходного смешанного числа заменить дробью со знаменателем $1$.

  3. Сложить обыкновенные дроби $\frac{n}{1}$ и $\frac{a}{b}$ для получения искомой неправильной дроби, равной исходному смешанному числу.

Пример 3

Представить смешанное число $7\frac{3}{5}$ в виде неправильной дроби.

Решение.

Воспользуемся алгоритмом перевода смешанного числа в неправильную дробь.

  1. Смешанное число $7\frac{3}{5}=7+\frac{3}{5}$.

  2. Запишем число $7$ в виде $\frac{7}{1}$.

  3. Сложим обыкновенные дроби $\frac{7}{1}+\frac{3}{5}=\frac{35}{5}+\frac{3}{5}=\frac{38}{5}$.

Запишем краткую запись данного решения:

\[7\frac{3}{5}=7+\frac{3}{5}=\frac{7}{1}+\frac{3}{5}=\frac{35}{5}+\frac{3}{5}=\frac{38}{5}.\]

Ответ: $7\frac{3}{5}=\frac{38}{5}$

Весь алгоритм перевода смешанного числа $n\frac{a}{b}$ в неправильную дробь сводится к \textit{формуле перевода смешанного числа в неправильную дробь}:

Пример 4

Записать смешанное число $14\frac{3}{5}$ в виде неправильной дроби.

Решение.

Воспользуемся формулой $n\frac{a}{b}=\frac{n\cdot b+a}{b}$ для перевода смешанного числа в неправильную дробь. В данном примере $n=14$, $a=3$, $b=5$.

Получим, $14\frac{3}{5}=\frac{14\cdot 5+3}{5}=\frac{73}{5}$.

Ответ: $14\frac{3}{5}=\frac{73}{5}$

Выделение целой части из неправильной дроби

При получении числового решения не принято оставлять ответ в виде неправильной дроби. Неправильная дробь преобразуется в равное ей натуральное число (если числитель делится нацело на знаменатель), или выделяют целую часть из неправильной дроби (если числитель не делится нацело на знаменатель).

Определение 2

Выделением целой части из неправильной дроби называется замена дроби равным ей смешанным числом.

Для выделения целой части из неправильной дроби нужно представить неправильную дробь $\frac{a}{b}$ в виде смешанного числа $q\frac{r}{b}$, где $q$ - неполное частное, $r$-- остаток от деления $a$ на $b$. Таким образом, целая часть равна неполному частному от деления $a$ на $b$, а остаток равен числителю дробной части.

Докажем это утверждение. Для этого достаточно показать, что $q\frac{r}{b}=\frac{a}{b}$.

Переведем смешанное число $q\frac{r}{b}$ в неправильную дробь с помощью формулы:

Т.к. $q$-- неполное частное, $r$-- остаток от деления $a$ на $b$, то является справедливым равенство $a=b\cdot q+r$. Таким образом, $\frac{q\cdot b+r}{b}=\frac{a}{b}$, откуда $q\frac{r}{b}=\frac{a}{b}$, что и требовалось показать.

Таким образом, сформулируем \textit{правило выделения целой части из неправильной дроби} $\frac{a}{b}$:

  1. Разделить $a$ на $b$ с остатком, при этом определить неполное частное $q$ и остаток $r$.

  2. Записать смешанное число $q\frac{r}{b}$, равное исходной дроби $\frac{a}{b}$.

Пример 5

Выделить целую часть из дроби $\frac{107}{4}$.

Решение.

Выполним деление в столбик:



Рисунок 1.

Итак, в результате деления числителя $a=107$ на знаменатель $b=4$ получаем неполное частное $q=26$ и остаток $r=3$.

Получаем, что неправильная дробь $\frac{107}{4}$ равна смешанному числу $q\frac{r}{b}=26\frac{3}{4}$.

Ответ: $\frac{{\rm 107}}{{\rm 4}}{\rm =26}\frac{{\rm 3}}{{\rm 4}}$.

Сложение смешанного числа и натурального числа

Правило сложения смешанного и натурального числа:

Для сложения смешанного и натурального числа нужно к целой части смешанного числа прибавить данное натуральное число, дробная часть остается без изменения:

где $a\frac{b}{c}$ -- смешанное число,

$n$ -- натуральное число.

Пример 6

Выполнить сложение смешанного числа $23\frac{4}{7}$ и числа $3$.

Решение.

\[23\frac{4}{7}+3=\left(23+3\right)+\frac{4}{7}=26\frac{4}{7}.\]

Ответ: $23\frac{4}{7}+3=26\frac{4}{7}.$

Сложение двух смешанных чисел

При сложении двух смешанных чисел складываются их целые части и дробные части.

Пример 7

Сложить смешанные числа $3\frac{1}{5}$ и $7\frac{4}{7}$.

Решение.

Воспользуемся формулой:

\[a\frac{b}{c}+d\frac{e}{f}=\left(a+d\right)+\left(\frac{b}{c}+\frac{e}{f}\right).\] \[3\frac{1}{5}+7\frac{4}{7}=\left(3+7\right)+\left(\frac{1}{5}+\frac{4}{7}\right)=10+\frac{1\cdot 7}{35}+\frac{4\cdot 5}{35}=10+\frac{27}{35}=10\frac{27}{35}.\]

Ответ: $10\frac{27}{35}.$

Сообщество экспертов Автор24

Автор этой статьи

Автор статьи

Щебетун Виктор

Эксперт по предмету «Математика»

Статья предоставлена специалистами сервиса Автор24
Автор24 - это сообщество учителей и преподавателей, к которым можно обратиться за помощью с выполнением учебных работ.
как работает сервис