Сжатие изображений
Выбери формат для чтения
Загружаем конспект в формате pdf
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
Ñîâðåìåííàÿ òåîðèÿ èíôîðìàöèè
Ëåêöèÿ 8. Ñæàòèå èçîáðàæåíèé. ×àñòü 1.
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
1 / 64
Ñîäåðæàíèå ëåêöèè
1
Öèôðî-àíàëîãîâîå ïðåîáðàçîâàíèå èçîáðàæåíèé.
2
Îñíîâíûå ïðèíöèïû ñæàòèÿ èçîáðàæåíèé.
3
Ïðåîáðàçîâàíèå öâåòîâîãî ïðîñòðàíñòâà.
4
Êîäèðîâàíèå ñ ïðåäñêàçàíèåì.
5
Êîäèðîâàíèå ñ ïðåîáðàçîâàíèåì.
6
Àëãîðèòì JPEG
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
2 / 64
Öèôðî-àíàëîãîâîå ïðåîáðàçîâàíèå èçîáðàæåíèé
Àíàëîãîâûå è öèôðîâûå ñèãíàëû
Ïîä
ñèãíàëîì
ïîíèìàåòñÿ ôèçè÷åñêèé ïðîöåññ (íàïðèìåð,
èçìåíÿþùååñÿ âî âðåìåíè íàïðÿæåíèå), îòîáðàæàþùèé íåêîòîðóþ
èíôîðìàöèþ èëè ñîîáùåíèå.
Àíàëîãîâûå ñèãíàëû - ýòî íåïðåðûâíûå ôóíêöèè íåïðåðûâíîãî
àðãóìåíòà, íàïðèìåð òàêîãî êàê âðåìÿ è/èëè ïðîñòðàíñòâî.
Äèñêðåòíûå ñèãíàëû ìîãóò áûòü äèñêðåòíûìè ïî ìíîæåñòâó
çíà÷åíèé ôóíêöèè èëè ïî ìíîæåñòâó çíà÷åíèé àðãóìåíòà.
Íàïðèìåð, åñëè çíà÷åíèÿ àíàëîãîâîãî ñèãíàëà âçÿòû ÷åðåç
îïðåäåëåííûå èíòåðâàëû âðåìåíè, òî òàêîé ñèãíàë íàçûâàåòñÿ
äèñêðåòíûì ïî âðåìåíè;
Åñëè ó äèñêðåòèçîâàííîãî ïî âðåìåíè ñèãíàëà îòñ÷åòû òàêæå
ïðèíèìàþò çíà÷åíèÿ èç íåêîòîðîãî äèñêðåòíîãî ìíîæåñòâà
çíà÷åíèé, òî òàêîé ñèãíàë íàçûâàåòñÿ öèôðîâûì.
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
3 / 64
Öèôðî-àíàëîãîâîå ïðåîáðàçîâàíèå èçîáðàæåíèé
Äèñêðåòèçàöèÿ ïî âðåìåíè è ïî óðîâíþ
Äëÿ òîãî, ÷òîáû ïîìåñòèòü àíàëîãîâûé (íåïðåðûâíûé ñèãíàë) â
öèôðîâîå óñòðîéñòâî íåîáõîäèìî ïðåîáðàçîâàòü åãî â öèôðîâîé
ñèãíàë. Àíàëîãî-öèôðîâîå ïðåîáðàçîâàíèå (ÖÀÏ) âêëþ÷àåò â ñåáÿ äâå
îñíîâíûå îïåðàöèè:
Îïåðàöèÿ äèñêðåòèçàöèè èëè âçÿòèÿ îòñ÷åòîâ íåïðåðûâíîãî
ñèãíàëà (êâàíòîâàíèå ïî âðåìåíè);
Îïåðàöèÿ êâàíòîâàíèÿ íåïðåðûâíîãî ñèãíàëà ïî óðîâíþ.
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
4 / 64
Öèôðî-àíàëîãîâîå ïðåîáðàçîâàíèå èçîáðàæåíèé
Âûáîð ÷àñòîòû äèñêðåòèçàöèè ïî âðåìåíè
1
sin(6πt)
*
*
0.8
0.6
0.4
0.2
*
*
*
*
*
t
−0.2
−0.4
−0.6
−0.8
*
−1
0.2
*
sin(2πt)
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
Êàê ïðàâèëüíî âûáðàòü èíòåðâàë äèñêðåòèçàöèè ïî âðåìåíè?
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
5 / 64
Öèôðî-àíàëîãîâîå ïðåîáðàçîâàíèå èçîáðàæåíèé
Ñïåêòð íåïðåðûâíîãî ñèãíàëà
Ïóñòü
x(t)
íåïðåðûâíàÿ îäíîìåðíàÿ ôóíêöèÿ. Ïðåîáðàçîâàíèå
Ôóðüå (ñïåêòð) äëÿ
x(t)
îïðåäåëÿåòñÿ ñëåäóþùèì îáðàçîì:
Z
∞
X (f ) =
x(t)e −jωt dt,
−∞
ãäå
ω = 2πf
êðóãîâàÿ ÷àñòîòà. Ýòà êîìïëåêñíàÿ ôóíêöèÿ ìîæåò
áûòü ïðåäñòàâëåíà â âèäå
X (f ) = A(f )e jϕ(f ) ,
ãäå
|A(f )|
íàçûâàåòñÿ àìïëèòóäíûì ñïåêòðîì ñèãíàëà èëè
àìïëèòóäíî-÷àñòîòíîé õàðàêòåðèñòèêîé ñèãíàëà, à
ϕ(f )
íàçûâàåòñÿ
ôàçîâûì ñïåêòðîì èëè ôàçîâî-÷àñòîòíîé õàðàêòåðèñòèêîé.
Âîññòàíîâèòü ñèãíàë ïî åãî ñïåêòðó ìîæíî ïðè ïîìîùè îáðàòíîãî
ïðåîáðàçîâàíèÿ Ôóðüå:
Z
∞
x(t) =
X (f )e −jωt df .
−∞
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
6 / 64
Öèôðî-àíàëîãîâîå ïðåîáðàçîâàíèå èçîáðàæåíèé
Òåîðåìà Êîòåëüíèêîâà-Íàéêâèñòà
x(t) è å¼ ñïåêòð èìååò âèä:
Z ∞
X (f ) =
x(t)e −j 2πft dt, åñëè |f | ≤ f0 .
−∞
X (f ) = 0, åñëè |f | > f0 .
Ïóñòü çàäàíà ôóíêöèÿ
Òîãäà ýòà ôóíêöèÿ ïîëíîñòüþ îïðåäåëÿåòñÿ ñâîèìè ìãíîâåííûìè
1
çíà÷åíèÿìè â ìîìåíòû, îòñòîÿùèå äðóã îò äðóãà íà
ñåêóíä:
2f0
x(t) =
X k sinπ(2f0 t − k)
x
.
2f0
π(2f0 t − k)
k
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
7 / 64
Öèôðî-àíàëîãîâîå ïðåîáðàçîâàíèå èçîáðàæåíèé
Ïðîñòðàíñòâåííûé ñïåêòð èçîáðàæåíèÿ
Ñïåêòð
L(ωx , ωy )
l(x, y ),
îïðåäåëÿåòñÿ ñëåäóþùèì îáðàçîì:
èçîáðàæåíèÿ, îïèñûâàåìîãî ôóíêöèåé ÿðêîñòè
Z
∞
Z
∞
L(ωx , ωy ) =
−∞
ãäå
ωx
è
ωy
l(x, y )e −j(ωx x+ωy y ) dxdy ,
−∞
êðóãîâûå ïðîñòðàíñòâåííûå ÷àñòîòû ñïåêòðà â
íàïðàâëåíèè îñåé
x
è
y.
Ñïåêòðàëüíàÿ èíòåíñèâíîñòü èçîáðàæåíèÿ:
S(ωx , ωy ) =
ãäå
x0 y0
1
x0 y0
|L(ωx , ωy )|2 ,
ïëîùàäü ïðÿìîóãîëüíèêà, â êîòîðîå âïèñàíî èçîáðàæåíèå.
Âîññòàíîâèòü ôóíêöèþ ÿðêîñòè ïî åãî ñïåêòðó ìîæíî ïðè ïîìîùè
îáðàòíîãî äâóìåðíîãî ïðåîáðàçîâàíèÿ Ôóðüå:
Z
∞
Z
∞
l(x, y ) =
−∞
Evgeny Belyaev (ITMO University)
L(ωx , ωy )e j(ωx x+ωy y ) dωx dωy .
−∞
Modern Information Theory
10 íîÿáðÿ 2021 ã.
8 / 64
Öèôðî-àíàëîãîâîå ïðåîáðàçîâàíèå èçîáðàæåíèé
Ïðîñòðàíñòâåííûé ñïåêòð èçîáðàæåíèÿ
Ðåàëüíûå èçîáðàæåíèÿ â îñíîâíîì ñîñòîÿò èç âåðòèêàëüíûõ èëè
ãîðèçîíòàëüíûõ îáúåêòîâ.
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
9 / 64
Öèôðî-àíàëîãîâîå ïðåîáðàçîâàíèå èçîáðàæåíèé
Òåîðåìà Êîòåëüíèêîâà-Íàéêâèñòà äëÿ èçîáðàæåíèÿ
Ïóñòü çàäàíà ôóíêöèÿ ÿðêîñòè èçîáðàæåíèÿ
l(x, y )
ñî ñïåêòðîì
Z ∞Z ∞
L(ω , ω ) =
l(x, y )e −j(2πfx x+2πfy y ) dxdy , |fx | ≤ fx0 , |fy | ≤ fy0 .
x
y
−∞ −∞
L(ωx , ωy ) = 0, èíà÷å.
Òîãäà ýòà ôóíêöèÿ ïîëíîñòüþ îïðåäåëÿåòñÿ ñâîèìè ìãíîâåííûìè
çíà÷åíèÿìè â ìîìåíòû, îòñòîÿùèå äðóã îò äðóãà íà èíòåðâàëû
1
1
∆x = 0 è ∆y = 0 â íàïðàâëåíèè îñåé x è y :
2fx
2fy
l(x, y ) =
XX
n
L(n∆x , k∆y )
k
Evgeny Belyaev (ITMO University)
sin2πfx0 (x − n∆x ) sin2πfy0 (y − k∆y )
·
2πfx0 (x − n∆x )
2πfy0 (y − k∆y )
Modern Information Theory
10 íîÿáðÿ 2021 ã.
10 / 64
Öèôðî-àíàëîãîâîå ïðåîáðàçîâàíèå èçîáðàæåíèé
Ïðèìåð íàðóøåíèÿ òåîðåìû (aliasing)
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
11 / 64
Öèôðî-àíàëîãîâîå ïðåîáðàçîâàíèå èçîáðàæåíèé
Ðàâíîìåðíîå ñêàëÿðíîå êâàíòîâàíèå
Íàèáîëåå ïðîñòîé ñïîñîá àïïðîêñèìàöèè ïîñëåäîâàòåëüíîñòè
ñîîáùåíèé
x = {x1 , ..., xn }
ìîæåò áûòü ðåàëèçîâàí ïðè ïîìîùè
ïðîöåäóðû ðàâíîìåðíîãî ñêàëÿðíîãî êâàíòîâàíèÿ, êîòîðàÿ êàæäîìó
ñèìâîëó
xi
ñîïîñòàâëÿåò íîìåð êâàíòà
|xi | + ∆/2
zi = sign(xi )
,
∆
ãäå
∆
- øàã êâàíòîâàíèÿ,
bxc
- îçíà÷àåò îïåðàöèþ îêðóãëåíèÿ äî
áëèæàéøåãî öåëîãî, íå ïðåâûøàþùåãî
èíà÷å
x , sign(xi ) = −1,
sign(xi ) = 1.
Ïðè ýòîì, àïïðîêñèìèðóþùåå ìíîæåñòâî
y = {y1 , ..., yn }
åñëè
xi < 0,
âû÷èñëÿåòñÿ
êàê
yi = ∆ · zi .
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
12 / 64
Öèôðî-àíàëîãîâîå ïðåîáðàçîâàíèå èçîáðàæåíèé
Ðàâíîìåðíîå ñêàëÿðíîå êâàíòîâàíèå
yi
xi
∆
Z
Ñðåäíÿÿ îøèáêà êâàíòîâàíèÿ
∞
ε=
(xi − yi )2 f (xi ) ≈
−∞
Evgeny Belyaev (ITMO University)
Modern Information Theory
∆2
12
.
10 íîÿáðÿ 2021 ã.
13 / 64
Öèôðî-àíàëîãîâîå ïðåîáðàçîâàíèå èçîáðàæåíèé
Öèôðî-àíàëîãîâàÿ èíòåãðàëüíàÿ ìèêðîñõåìà
Ñâåòî÷óâñòâèòåëüíàÿ ìàòðèöà öèôðî-àíàëîãîâàÿ èíòåãðàëüíàÿ
ìèêðîñõåìà, ñîñòîÿùàÿ èç ôîòîäèîäîâ (ñâåòî÷óâñòâèòåëüíûõ
ýëåìåíòîâ).
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
14 / 64
Öèôðî-àíàëîãîâîå ïðåîáðàçîâàíèå èçîáðàæåíèé
Öèôðîâîå ïðåäñòàâëåíèå èçîáðàæåíèé â ôîðìàòå RGB24
(B,R,G) (B,R,G) (B,R,G) (B,R,G) (B,R,G) (B,R,G)
...
(B,R,G) (B,R,G)
(B,R,G) (B,R,G) (B,R,G) (B,R,G) (B,R,G) (B,R,G)
...
(B,R,G) (B,R,G)
(B,R,G) (B,R,G) (B,R,G) (B,R,G) (B,R,G) (B,R,G)
...
(B,R,G) (B,R,G)
(B,R,G) (B,R,G) (B,R,G) (B,R,G) (B,R,G) (B,R,G)
...
(B,R,G) (B,R,G)
...
...
...
...
...
...
(B,R,G) (B,R,G) (B,R,G) (B,R,G) (B,R,G) (B,R,G)
R, G , B ∈ [0, ..., 255]
or
Evgeny Belyaev (ITMO University)
24 áèò
...
...
...
(B,R,G) (B,R,G)
íà ïèêñåëü.
Modern Information Theory
10 íîÿáðÿ 2021 ã.
15 / 64
Îñíîâíûå ïðèíöèïû ñæàòèÿ èçîáðàæåíèé
Èçáûòî÷íîñòü â ïðåäñòàâëåíèè èçîáðàæåíèé
Êîäîâàÿ èçáûòî÷íîñòü
âîçíèêàêåò èç-çà èñïîëüçîâàíèÿ êîäîâ,
êîòîðûå íå ìèíèìèçèðóþò ñðåäíþþ äëèíó êîäîâîãî ñëîâà
(ðàâíîìåðíûé êîä âìåñòî Õàôôìàíà è ò.ä.).
Ìåæïèêñåëüíàÿ èçáûòî÷íîñòü
ñâÿçàíà ñ òåì, ÷òî ïèêñåëü èëè
ãðóïïû ïèêñåëåé ïîõîæè äðóã íà äðóãà.
I Ñòàòèñòè÷åñêàÿ çàâèñèìîñòü öâåòîâûõ êîìïîíåíò (R, G è B).
I Ëîêàëüíàÿ ñõîæåñòü ñîñåäíèõ ïèêñåëåé (local similarity).
I Ñõîæåñòü óäàë¼ííûõ ãðóïï ïèêñåëåé (non-local similarity).
Ïñèõîâèçóàëüíàÿ èçáûòî÷íîñòü
çðèòåëüíàÿ ñèñòåìà ÷åëîâåêà
èìååò ðàçíóþ ÷óâñòâèòåëüíîñòü ê âèçóàëüíîé èíôîðìàöèè (ðàçíîå
âîñïðèÿòèå âåðòèêàëüíûõ, ãîðèçîíòàëüíûõ è äèàãîíàëüíûõ ëèíèé,
ïðèîðèòåò îäíèõ ó÷àñòêîâ (ëèö) èçîáðàæåíèÿ íàä äðóãèìè.
Ìàøèííàÿ èçáûòî÷íîñòü
àíàëîãè÷íî, åñëè ïðåäïîëàãàåòñÿ,
÷òî èçîáðàæåíèå ïåðåäà¼òñÿ äëÿ ìàøèííîé îáðàáîòêè, à íå äëÿ
÷åëîâåêà.
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
16 / 64
Îñíîâíûå ïðèíöèïû ñæàòèÿ èçîáðàæåíèé
Ëîêàëüíàÿ è íå ëîêàëüíàÿ ñõîæåñòü ñîñåäíèõ ïèêñåëåé
γ(∆n) =
A(∆n)
,
A(0)
A(∆n) =
1
N−X
1−∆.n
N − ∆n
f (x)f (x + ∆n).
x=0
Ðèñ.: a) Èçîáðàæåíèå, b) Ãèñòîãðàììà c) Àâòîêîððåëÿöèÿ äëÿ îäíîé ñòðîêè
1
1
R.Gonzalez, R.Woods, Digital Image Processing, 2001.
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
17 / 64
Îñíîâíûå ïðèíöèïû ñæàòèÿ èçîáðàæåíèé
Ñæàòèå áèíàðíûõ èçîáðàæåíèé
1
1024×343 ìîíîõðîìíîå
èçîáðàæåíèå ïðåîáðàçóåòñÿ â
áèíàðíîå2 ;
2
Êàæäàÿ ëèíèÿ ïðåäñòâëÿåòñÿ
ïàðàìè
wi
(gi , wi ),
ãäå
gi
çíà÷åíèå è
êîëè÷åñòâî ïîâòîðåíèé (äëèíà
ñåðèè).
3
Äëÿ ëèíèè 100 äîñòàòî÷íî 88 äëÿ
ïðåäñòàâëåíèÿ ñòðîêè èç 1024
çíà÷åíèé.
4
Êàæäàÿ ñåðèÿ ïðåäñòâëÿåòñÿ 11
áèòàìè, âñåãî êîäèðóåòñÿ 1266
ñåðèé.
5
2
CR =
1024·343·1
1266·11
= 2.63
R.Gonzalez, R.Woods, Digital Image Processing, 2001.
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
18 / 64
Îñíîâíûå ïðèíöèïû ñæàòèÿ èçîáðàæåíèé
Thatcher eect
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
19 / 64
Îñíîâíûå ïðèíöèïû ñæàòèÿ èçîáðàæåíèé
Thatcher eect
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
20 / 64
Îñíîâíûå ïðèíöèïû ñæàòèÿ èçîáðàæåíèé
3
Region-of-interest coding
Ðèñ.: a) JPEG2000 b) JPEG2000+ROI
3
A. Nguyen et. all, Gaze Tracking for Region of Interest Coding in JPEG2000, 2005.
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
21 / 64
Îñíîâíûå ïðèíöèïû ñæàòèÿ èçîáðàæåíèé
Îöåíêà êà÷åñòâà èçîáðàæåíèé
Èñïîëüçóþòñÿ îáúåêòèâíûå è ñóáúåêòèâíûå îöåíêè êà÷åñòâà
èçîáðàæåíèé.
Îáúåêòèâíûå ìåòðèêè (MSE, PSNR)
I Ñðåäíåêâàäðàòè÷åñêàÿ îøèáêà (MSE).
MSE =
1
MN
M−
X1 N−
X1
[f (x, y ) − fˆ(x, y )]2 .
x=0 y =0
I Ïèêîâîå îòíîøåíèå ñèãíàëà ê øóìó (Peak signal-to-noise ratio,
PSNR).
PSNR = 10 lg
|fmax (x, y )|2
,
MSE
ãäå fmax (x, y ) ìàêñèìàëüíî âîçìîæíîå çíà÷åíèå ÿðêîñòè. Äëÿ
8-áèòíîãî èçîáðàæåíèÿ fmax (x, y )
Evgeny Belyaev (ITMO University)
= 255.
Modern Information Theory
10 íîÿáðÿ 2021 ã.
22 / 64
Îñíîâíûå ïðèíöèïû ñæàòèÿ èçîáðàæåíèé
Ñóáüåêòèâíàÿ îöåíêà êà÷åñòâà èçîáðàæåíèé
Âèçóàëüíîå ñðàâíåíèå äâóõ èçîáðàæåíèé:
{−3, −2, −1, 0, 1, 2, 3}
= {much worse, worse, slightly worse, the
same, slightly better, better, much better};
Îöåíêà îäíîãî èçîáðàæåíèÿ ïî øêàëå:
4
4
Methodology for the Subjective Assessment of the Quality of Television Pictures,
ITU-R Rec.BT.500-13, 2012
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
23 / 64
Îñíîâíûå ïðèíöèïû ñæàòèÿ èçîáðàæåíèé
Ôóíêöèÿ ñêîðîñòü-èñêàæåíèå
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
24 / 64
Îñíîâíûå ïðèíöèïû ñæàòèÿ èçîáðàæåíèé
Îáùàÿ ñõåìà ñæàòèÿ èçîáðàæåíèé
Encoder
Rate
controller
Compression
ratio
Encoding
parameters
Image
Interpixel
redundancy
removal
Quantization
Lossless symbol
(entropy)
encoding
Image
Image
reconstruction
Inverse
Quantization
Lossless symbol
(entropy)
decoding
Bit
stream
Channel encoder,…,
Channel, …, Channel
decoder
Decoder
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
25 / 64
Îñíîâíûå ïðèíöèïû ñæàòèÿ èçîáðàæåíèé
Îáùàÿ ñõåìà ñæàòèÿ èçîáðàæåíèé
Óñòðàíåíèå èçáûòî÷íîñòè, ñâÿçàííîé ñî ñõîæåñòüþ ïèêñåëåé:
I Ïðåîáðàçîâàíèå öâåòîâîãî ïðîñòðàíñòâà;
I Êîäèðîâàíèå ñ ïðåäñêàçàíèåì;
I Êîäèðîâàíèå ñ ïðåîáðàçîâàíèåì.
Êâàíòîâàíèå (ïðè ñæàòèè ñ ïîòåðÿìè);
Àäàïòèâíîå êîäèðîâàíèå ïîëó÷åííûõ äàííûõ:
I Êîäèðîâàíèå äëèí ñåðèé;
I Ïîáóêâåííîå êîäèðîâàíèå (Õàôôìàí);
I Êîíòåêñòíîå àäàïòèâíîå àðèôìåòè÷åñêîå êîäèðîâàíèå.
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
26 / 64
Ïðåîáðàçîâàíèå öâåòîâîãî ïðîñòðàíñòâà
Ôîðìàò YCbCr
Íàèáîëåå ÷àñòî èñïîëüçóåòñÿ ïðåîáðàçîâàíèå èç ôîðìàòà RGB24
â ôîðìàò YCbCr 4:2:0:
Ïðÿìîå ïðåîáðàçîâàíèå:
Y = 0.299 · R + 0.587 · G + 0.114 · B,
Cb = (B − Y ) · 0.5643 + 128,
Cr = (R − Y ) · 0.7132 + 128.
Îáðàòíîå ïðåîáðàçîâàíèå:
G = Y − 0.714 · (Cr − 128) − 0.334 · (Cb − 128),
R = Y + 1.402 · (Cr − 128),
B = Y + 1.772 · (Cb − 128).
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
27 / 64
Ïðåîáðàçîâàíèå öâåòîâîãî ïðîñòðàíñòâà
Ïðèìåð
Original
Image
Original
image
Evgeny Belyaev (ITMO University)
R
G
Luma (Y)
Modern Information Theory
B
Chroma (Cb, Cr)
10 íîÿáðÿ 2021 ã.
28 / 64
Ïðåîáðàçîâàíèå öâåòîâîãî ïðîñòðàíñòâà
Äåöèìàöèÿ öâåòîðàçíîñòíûõ êîìïîíåíò Cb è Cr
(Y1 , U 1 , V1 )
(Y3 , U 3 , V3 )
U=
(Y2 , U 2 , V2 )
(Y1 , U , V )
(Y2 , U , V )
(Y4 , U 4 , V4 )
(Y3 , U , V )
(Y4 , U , V )
U1 + U2 + U3 + U4 + 2
4
Evgeny Belyaev (ITMO University)
,V =
V1 + V2 + V3 + V4 + 2
Modern Information Theory
4
10 íîÿáðÿ 2021 ã.
.
29 / 64
Ïðîñòîé êîäåê èçîáðàæåíèé
Ìîíîõðîìíîå èçîáðàæåíèå.
Êàæäûé ïèêñåëü
Evgeny Belyaev (ITMO University)
xi ∈ {0, 1, ..., 255}.
Modern Information Theory
10 íîÿáðÿ 2021 ã.
30 / 64
Ïðîñòîé êîäåê èçîáðàæåíèé
Êâàíòîâàíèå è ýíòðîïèéíîå êîäèðîâàíèå.
1
Íà âõîäå ìîíîõðîìíîå èçîáðàæåíèå
X = {x1 , x2 , ...},
xi ∈ {0, 1, ..., 255}.
2
Êîäåð
xi + ∆/2
.
∆
Êîäèðîâàíèå {z1 , z2 , ..} (íàïðèìåð, êîäîì Õàôôìàíà).
X
Áèòðåéò R ìîæíî îöåíèòü êàê: R ≈ H(Z ) = −
pj log2 (pj ),
1
2
3
Êâàíòîâàíèå:
zi =
ãäå
pj
j
ýòî âåðîÿòíîñòü
3
zi = j .
Äåêîäåð
1
Äåêîäèðîâàíèå
2
Âîññòàíîâëåíèå
Evgeny Belyaev (ITMO University)
{z1 , z2 , ..}.
x̂i = ∆ · zi .
Modern Information Theory
10 íîÿáðÿ 2021 ã.
31 / 64
Ïðîñòîé êîäåê èçîáðàæåíèé
Êâàíòîâàíèå è ýíòðîïèéíîå êîäèðîâàíèå
Êâàíòîâàíèå íåîáðàòèìàÿ îïåðàöèÿ, ïîýòîìó
Evgeny Belyaev (ITMO University)
Modern Information Theory
H(Q(X )) < H(X ).
10 íîÿáðÿ 2021 ã.
32 / 64
Êîäèðîâàíèå ñ ïðåäñêàçàíèåì
Îáùàÿ èäåÿ
Ðèñ.: Ãèñòîãðàììà
X
,
H(X ) = 7.44
Ðèñ.: Èñõîäíîå èçîáðàæåíèå
Êîä Õàôôìàíà äëÿ äàííîãî ðàñïðåäåëåíèÿ îáåñïå÷èò íå áîëåå
H(X ) = 7.44
áèò íà ïèêñåëü (áåç ñæàòèÿ 8 áèò).
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
33 / 64
Êîäèðîâàíèå ñ ïðåäñêàçàíèåì
Îáùàÿ èäåÿ
Ïîñòðîèì ðàñïðåäåëåíèå ïèêñåëÿ
xi
ïðè çàäàííîì ïèêñåëå
xi−1 .
H(Xi |50) = 4.56, H(Xi |100) = 4.57, H(Xi |200) = 4.27.
R(Xi |Xi−1 ) ≈ H(Xi |Xi−1 ) =
255
X
p(s)H(Xi |s) = 4.54 < H(Xi ) = 7.44.
s=0
Êîä Õàôôìàíà ïîòðåáóåò 256 êîäîâûõ òàáëèö!
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
34 / 64
Êîäèðîâàíèå ñ ïðåäñêàçàíèåì
Îáùàÿ èäåÿ
Ðèñ.: Ãèñòîãðàììà îøèáêè
ïðåäñêàçàíèÿ,
H(E ) = 5.07
Ðèñ.: Îøèáêà ïðåäñêàçàíèÿ
ei = xi − xi−1
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
35 / 64
Êîäèðîâàíèå ñ ïðåäñêàçàíèåì
Íåïðàâèëüíûé àëãîðèòì êîäèðîâàíèÿ
Êîäåð
1
Íàêîïëåíèå îøèáêè â äåêîäåðå:
Âû÷èñëåíèå îøèáêè
1
Ïóñòü
ei = xi − xi−1 .
ei + ∆/2
Êâàíòîâàíèå: zi =
.
∆
Êîäèðîâàíèå zi .
2
e1 = x1 − x0 , (x0 = x1 − e1 )
3
ê1 = ∆ · z1 = e1 + δ1
4
x̂1 = x0 + ê1 = x0 + e1 + δ1 = x1 + δ1
5
e2 = x2 − x1 , (x1 = x2 − e2 )
ïðåäñêàçàíèÿ:
2
3
Äåêîäåð
1
Äåêîäèðîâàíèå
zi .
2
Äåêâàíòîâàíèå:
êi = ∆ · zi .
3
Âîññòàíîâëåíèå:
x̂i = x̂i−1 + êi .
x̂0 = x0
6
ê2 = ∆ · z2 = e2 + δ2
7
x̂2 = x̂1 + ê2 = x1 + δ1 + e2 + δ2 =
x2 + δ1 + δ2
n
X
x̂n = xn +
δk .
8
k=1
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
36 / 64
Êîäèðîâàíèå ñ ïðåäñêàçàíèåì
Êîäèðîâàíèå ñ ïðåäñêàçàíèåì è êâàíòîâàíèåì
Îøèáêà â äåêîäåðå:
Êîäåð
1
Âû÷èñëåíèå îøèáêè
3
ei =xi − x̂i−1 .
ei + ∆/2
Êâàíòîâàíèå: zi =
.
∆
Êîäèðîâàíèå zi .
4
Âîññòàíîâëåíèå:
ïðåäñêàçàíèÿ:
2
x̂i = x̂i−1 + êi = x̂i−1 + zi · ∆.
Äåêîäåð
1
2
3
zi .
Äåêâàíòîâàíèå: êi = ∆ · zi .
Âîññòàíîâëåíèå: x̂i = x̂i−1 + êi .
Äåêîäèðîâàíèå
Evgeny Belyaev (ITMO University)
1
e1 = x1 − x0 , (x0 = x1 − e1 )
2
ê1 = ∆ · z1 = e1 + δ1
3
x̂1 = x0 + ê1 = x0 + e1 + δ1 = x1 + δ1
4
e2 = x2 − x̂1 , (x̂1 = x2 − e2 )
5
ê2 = ∆ · z2 = e2 + δ2
6
x̂2 = x̂1 + ê2 = x̂1 + e2 + δ2 = x2 + δ2 .
7
x̂n = xn + δn .
Modern Information Theory
10 íîÿáðÿ 2021 ã.
37 / 64
Êîäèðîâàíèå ñ ïðåäñêàçàíèåì
Ñðàâíåíèå êîäèðîâàíèÿ ñ ïðåäñêàçàíèåì è áåç ïðåäñêàçàíèÿ
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
38 / 64
Êîäèðîâàíèå ñ ïðåäñêàçàíèåì
Ñðàâíåíèå êîäèðîâàíèÿ ñ ïðåäñêàçàíèåì è áåç ïðåäñêàçàíèÿ
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
39 / 64
Êîäèðîâàíèå ñ ïðåäñêàçàíèåì
Îáùàÿ ñõåìà
xi
-
ei
zi
Quantization
pi
+
yi
Inverse
quantization
Prediction
1
Âû÷èñëåíèå îøèáêè ïðåäñêàçàíèÿ:
2
Êâàíòîâàíèå:
zi =
3
Êîäèðîâàíèå
zi .
4
Äåêâàíòîâàíèå:
5
6
ei + q/2
q
ei = xi − pi .
.
yi = êi + pi = zi · q + pi .
Âû÷èñëåíèå ïðåäñêàçàòåëÿ: pi+1 = f (y0 , y1 , ..., yi ).
Ïðîñòåéøèé ñëó÷àé: pi+1 = yi .
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
40 / 64
Êîäèðîâàíèå ñ ïðåäñêàçàíèåì
Ñòàíäàðò JPEG-LS
5
JPEG-LS ðàáîòàåò â äâóõ ðåæèìàõ: regular mode è run-length mode.
Âû÷èñëåíèå ãðàäèåíòà:
d1 = d − b,
d2 = b − c,
d3 = c − a.
Åñëè
d 1 = d 2 = d 3 = 0,
òî êîäåð ïåðåõîäèò â ðåæèì êîäèðîâàíèÿ
äëèí ñåðèé äî òåõ ïîð, ïîêà íå ïðîèçîéä¼ò
a 6= x ,
ëèáî íå áóäåò
äîñòèãíóò êîíåö ñòðîêè. Äëèíà ñåðèè ïåðåäà¼òñÿ ìîíîòîííûì
êîäîì (Rice-Golomb code) è êîäåð âîçâðàùàåòñÿ â regular mode.
5
ISO/IEC 14495-1, ITU Recommendation T.87, Information technology - Lossless and
near-lossless compression of continuous-tone still images, 1999.
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
41 / 64
Êîäèðîâàíèå ñ ïðåäñêàçàíèåì
Ñòàíäàðò JPEG-LS. Regular mode
Ïèêñåëè îáðàáàòûâàþòñÿ â ðàñòðîâîì ïîðÿäêå;
Âû÷èñëåíèå ïðåäñêàçàòåëÿ:
min(a, b) if c ≥ max(a, b),
max(a, b) if c ≤ min(a, b)
px ←
a + b − c otherwise.
Êîððåêöèÿ ïðåäñêàçàòåëÿ:
px ← px + ∆p(d 1, d 2, d 3).
Îøèáêà ïðåäñêàçàíèÿ
ex ← x − px
êîäèðóåòñÿ ìîíîòîííûì êîäîì
(Rice-Golomb code).
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
42 / 64
Êîäèðîâàíèå ñ ïðåäñêàçàíèåì
Îáùàÿ ñõåìà ñòàíäàðòà JPEG-LS
6
Òàáëèöà: Áèòû íà ïèêñåëü äëÿ Lena
6
CALIC
JPEG-LS
JPEG2000 lossless
WinRAR
4.121
4.237
4.330
5.135
M. Weinberger, G. Seroussi, G. Sapiro, The LOCO-I Lossless Image Compression
Algorithm: Principles and Standardization into JPEG-LS.
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
43 / 64
Êîäèðîâàíèå ñ ïðåîáðàçîâàíèåì
Îñíîâíàÿ èäåÿ
Äåëèì èçîáðàæåíèå íà íåïåðåñåêàþùèåñÿ áëîêè ðàçìåðîì
Âûïîëíÿåì ïðåîáðàçîâàíèå
n×n
n × n;
äëÿ êàæäîãî áëîêà:
I Ïðåîáðàçîâàíèå äîëæíî äåêêîðåëèðîâàòü çíà÷åíèÿ â áëîêå èëè
ïðåäñòàâèòü èíôîðìàöèþ î áëîêå â íàèìåíüøåì êîëè÷åñòâå
êîýôôèöèåíòîâ ïðåîáðàçîâàíèÿ.
I Ïðåîáðàçîâàíèå äîëæíî áûòü îðòîíîðìàëüíûì (èñêàæåíèå â
îáëàñòè êîýôôèöèåíòîâ ïðåîáðàçîâàíèÿ äîëæíî áûòü ðàâíî
èñêàæåíèþ â îáëàñòè ñèãíàëà).
I Ïðåîáðàçîâàíèå äîëæíî èìåòü íåáîëüøóþ âû÷èñëèòåëüíóþ
ñëîæíîñòü (íàïðèìåð, áûòü ñåïàðàáåëüíûì).
Êâàíòîâàíèå óñòðàíÿåò íàèìåíåå èíôîðìàòèâíûå êîýôôèöèåíòû
ïðåîáðàçîâàíèÿ.
Ýíòðîïèéíîå êîäèðîâàíèå ïðèìåíÿåòñÿ ê êâàíòîâàííûì
êîýôôèöèåíòàì ïðåîáðàçîâàíèÿ.
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
44 / 64
Êîäèðîâàíèå ñ ïðåîáðàçîâàíèåì
Âûáîð ïðåîáðàçîâàíèÿ
Ïðÿìîå ïðåîáðàçîâàíèå
T (u, v ) =
N−
X1
X1 N−
f (x, y )g (x, y , u, v ),
x=0 y =0
u, v = 0, 1, 2, ..., N − 1.
Îáðàòíîå ïðåîáðàçîâàíèå
f (x, y ) =
N−
X1 N−
X1
T (x, y )h(x, y , u, v ).
u=0 v =0
Ñåïàðàáåëüíîå ïðåîáðàçîâàíèå:
g (x, y , u, v ) = g1 (x, u) · g2 (y , v ).
Ñèììåòðè÷íîå ïðåîáðàçîâàíèå:
g (x, y , u, v ) = g1 (x, y ) · g1 (u, v ).
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
45 / 64
Êîäèðîâàíèå ñ ïðåîáðàçîâàíèåì
Âûáîð ïðåîáðàçîâàíèÿ
Âîçìîæíûå êàíäèäàòû:
Ïðåîáðàçîâàíèå Êàðóíåíà-Ëîåâà (Karhunen-Loeve Transform,
KLT);
I Ãàðàíòèðóåò, ÷òî êîýôôèöèåíòû íå êîððåëèðîâàíû.
I Îïòèìàëüíûé áàçèñ çàâèñèò îò âõîäíûõ äàííûõ, ò.å., åãî íóæíî
ïåðåäàâàòü äåêîäåðó.
I Âûñîêàÿ âû÷èñëèòåëüíàÿ ñëîæíîñòü;
Äèñêðåòíîå ïðåîáðàçîâàíèå Ôóðüå (Discrete Fourier Transform,
DFT);
I Èìååò èçáûòî÷íûå (ìíèìûå) êîýôôèöèåíòû;
Äèñêðåòíîå êîñèíóñíîå ïðåîáðàçîâàíèå (Discrete Cosine Transform,
DCT);
Äèñêðåòíîå ïðåîáðàçîâàíèå Óîëøà-Àäàìàðà (Walsh-Hadamard
transform, WHT);
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
46 / 64
Êîäèðîâàíèå ñ ïðåîáðàçîâàíèåì
Ïðåîáðàçîâàíèå Óîëøà-Àäàìàðà
g (x, y , u, v ) = h(x, y , u, v ) =
where
bi (x)
çíà÷åíèå áèòà â
1
N
x
(−1)(bi (x)pi (u) + bi (y )pi (v )) , N = 2m ,
íà ïîçèöèè
i.
p0 (u) = bn−1 (u),
p1 (u) = bn−1 (u) + bn−2 (u),
p2 (u) = bn−2 (u) + bn−3 (u),
...
pn−1 (u) = b1 (u) + b0 (u).
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
47 / 64
Êîäèðîâàíèå ñ ïðåîáðàçîâàíèåì
Äèñêðåòíîå êîñèíóñíîå ïðåîáðàçîâàíèå
g (x, y , u, v ) = h(x, y , u, v ) = a(u)a(v ) cos
(2x + 1)uπ
2N
cos
(2y + 1)v π
2N
1
√ ,u = 0
N
a(u) =
2
√ , u 6= 0.
N
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
48 / 64
Êîäèðîâàíèå ñ ïðåîáðàçîâàíèåì
Äèñêðåòíîå ïðåîáðàçîâàíèå Ôóðüå
50
50
100
100
150
150
200
200
250
250
300
300
350
350
400
400
450
450
500
500
100
Ðèñ.: FFT 128
200
× 128
300
400
500
100
200
300
400
500
ïîñëå óäàëåíèå 90% êîýôôèöèåíòîâ ñ íàèìåíüøåé
àìïëèòóäîé, Y-PSNR=31.23 äÁ
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
49 / 64
Êîäèðîâàíèå ñ ïðåîáðàçîâàíèåì
Äèñêðåòíîå ïðåîáðàçîâàíèå Óîëøà-Àäàìàðà
50
50
100
100
150
150
200
200
250
250
300
300
350
350
400
400
450
450
500
500
100
Ðèñ.: WHT 128
200
× 128
300
400
500
100
200
300
400
500
ïîñëå óäàëåíèå 90% êîýôôèöèåíòîâ ñ íàèìåíüøåé
àìïëèòóäîé, Y-PSNR=30.40 äÁ
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
50 / 64
Êîäèðîâàíèå ñ ïðåîáðàçîâàíèåì
Äèñêðåòíîå êîñèíóñíîå ïðåîáðàçîâàíèå
50
50
100
100
150
150
200
200
250
250
300
300
350
350
400
400
450
450
500
500
100
Ðèñ.: DCT 128
200
× 128
300
400
500
100
200
300
400
500
ïîñëå óäàëåíèå 90% êîýôôèöèåíòîâ ñ íàèìåíüøåé
àìïëèòóäîé, Y-PSNR=34.15 äÁ
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
51 / 64
Êîäèðîâàíèå ñ ïðåîáðàçîâàíèåì
Âûáîð ïðåîáðàçîâàíèÿ
40
39
Y−PSNR, dB
38
37
36
35
34
DCT
WHT
FFT
33
32
4x4
8x8
16x16
32x32
64x64
Transform size
128x128 256x256 512x512
Ðèñ.: Y-PSNR ïîñëå óäàëåíèå 80% êîýôôèöèåíòîâ ñ íàèìåíüøåé àìïëèòóäîé
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
52 / 64
Ñòàíäàðò JPEG
Îñíîâíûå ýòàïû
7
1
Ïðåîáðàçîâàíèå öâåòîâîãî ïðîñòðàíñòâà èç RGB24 â YCbCr 4:2:0;
2
Ðàçáèåíèå ÿðêîñòíîé è öâåòîðàçíîñòíîé êîìïîíåíòû íà áëîêè
8
× 8;
3
Ïðèìåðåíèå 2-D DCT äëÿ êàæäîãî áëîêà;
4
Êâàíòîâàíèå DCT êîýôôèöèåíòîâ;
5
DC êîýôôèöèåíò èç òåêóùåãî áëîêà ïðåäñêàçûâàåòñÿ ïðè ïîìîùè
DC êîýôôèöèåíòà ïðåäûäóùåãî áëîêà è êîäèðîâàíèå ðàçíîñòè
êîäîì Ëåâåíøòåéíà ñ êîäîì Õàôôìàíà â ïåðâîé ÷àñòè êîäîâîãî
ñëîâà.
6
Ñêàíèðîâàíèå AC êîýôôèöèåíòîâ â 'çèãçàãîîáðàçíîì' ïîðÿäêå.
7
Îäíîìåðíûé âåêòîð AC êîäèðóåòñÿ äëèíàìè ñåðèé è êîäîì
Õàôôìàíà.
7
Digital compression and coding of continuous-tone still images, ITU-T and ISO/IEC
JTC1, 1992.
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
53 / 64
Ñòàíäàðò JPEG
Ïðèìåð
Èñõîäíûé áëîê 8
X =
× 8:
168
161
161
150
154
168
164
154
171
154
161
150
157
171
150
164
171
168
147
164
164
161
143
154
164
171
154
161
157
157
147
132
161
161
157
154
143
161
154
132
164
161
161
154
150
157
154
140
161
168
157
154
161
140
140
132
154
161
157
150
140
132
136
128
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
54 / 64
Ñòàíäàðò JPEG
Ïðèìåð
Áëîê ïîñëå âû÷èòàíèÿ 128 è âûïîëíåíèÿ 2-D DCT:
214
49
−3
20
34 −25 11 13
−6 −4
8
−9
8
−
10
4
4
Y =
−12
5
−1 −2
5
9
−8 3
2
−2
3
−1
−1
1
2
Evgeny Belyaev (ITMO University)
−10 −1
1
5
−3 15
3
−3
5
−15 10
6
−15 9
−5
4
−7 −14
1
3
−3
3
−2 −4
Modern Information Theory
−6
−6
10
6
−1
2
−4
−2
10 íîÿáðÿ 2021 ã.
55 / 64
Ñòàíäàðò JPEG
Ïðèìåð
Áëîê ïîñëå ñêàëÿðíîãî êâàíòîâàíèÿ:
Z =
Evgeny Belyaev (ITMO University)
13
4
1
3
−2
1
1
1
1
−1
Modern Information Theory
10 íîÿáðÿ 2021 ã.
56 / 64
Ñòàíäàðò JPEG
Ïðèìåð
Êîýôôèöèåíòû ñêàíèðóþòñÿ â çèãçàãîîáðàçíîì ïîðÿäêå:
1
2 3
4
5
6
7
1
2
3
4
5
6
7
Ïîñëå ñêàíèðîâàíèÿ
Z = {13, 4, 3, 0, −2, 0, 1, 1, 0, 1, −1, −1, 1, 1, 0, ..., 0};
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
57 / 64
Ñòàíäàðò JPEG
Ïðèìåð
Z = {13, 4, 3, 0, −2, 0, 1, 1, 0, 1, −1, −1, 1, 1, 0, ..., 0};
Ïåðâûé êîýôôèöèåíò 13 (DC coecient) ïðåäñêàçûâàåòñÿ ïî DC
êîýôôèöèåíòó èç ïðåäûäóùåãî (ñëåâà) áëîêà, çàòåì àìïëèòóäà
îøèáêè ïðåäñêçàíèÿ êîäèðóåòñÿ ìîíîòîííûì êîäîì, â êîòîðîì
ïåðâàÿ ÷àñòü êîäèðóåòñÿ êîäîì Õàôôìàíà. Äîïîëíèòåëüíûé áèò
èñïîëüçóåòñÿ äëÿ ïåðåäà÷è çíàêà äëÿ íåíóëåâûõ çíà÷åíèé.
n → huff(DC
| {zbit} .
{z bits)} bin(DC)
| {z } one
|
sign
DC bit size
DC
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
58 / 64
Ñòàíäàðò JPEG
Ïðèìåð
Z = {13, 4, 3, 0, −2, 0, 1, 1, 0, 1, −1, −1, 1, 1, 0, ..., 0};
Îñòàâøèåñÿ êîýôôèöèåíòû (AC coecients) ïðåäñòàâëÿþòñÿ
ïàðàìè
[run, level], ãäå run ÷èñëî íóëåé ïåðåä íåíóëåâûì
level çíà÷åíèå íåíóëåâîãî êîýôôèöèåíòà.
êîýôôèöèåíòîì,
Â
íàøåì ñëó÷àå:
[0, 4],[0, 3],[1, −2],[1, 1],[0, 1],[1, 1],[0, −1],[0, −1],[0, 1],[0, 1].
[run, level] →
Huffman
bin(|level|)
| {z }
| {zbit} .
|
{z
} one
sign
level
[run, level bit size]
Åñëè ïàðà [run,level ] íå ïðèñóòâóåò â êîäîâîé òàáëèöå Õàôôìàíà,
òî ïåðåäà¼òñÿ ESC-ñèìâîë, ïîñëå ÷åãî
run
è
level
ïåðåäàþòñÿ
ðàâíîìåðíûì êîäîì.
End-of-block (EOB) ñèìâîë ïåðåäà¼òñÿ êîäîì Õàôôìàíà, åñëè â
çèã-çàãå äàëåå ñëåäóþò òîëüêî íóëè.
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
59 / 64
Ñòàíäàðò JPEG
Ïðèìåð
Áëîê ïîñëå äåêîäèðîâàíèÿ êîäîì Õàôôìàíà, îáðàòíîãî ïðîõîäà ïî
çèã-çàãó, äåêâàíòîâàíèÿ, îáðàòíîãî ïðåîáðàçîâàíèÿ è ïðèáàâëåíèÿ
128:
X̂ =
171
160
149
149
158
166
166
162
174
164
155
154
160
164
161
156
171
164
157
156
158
158
151
145
161
157
154
154
155
151
144
137
156
155
155
156
156
152
145
140
159
160
160
160
157
153
148
145
161
161
160
156
150
144
141
139
159
158
155
148
139
132
129
128
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
60 / 64
Ñòàíäàðò JPEG
Áëîêîâûå àðòåôàêòû
Ïðè áîëüøèõ çíà÷åíÿõ
Evgeny Belyaev (ITMO University)
∆
âîçíèêàþò õîðîøî âèäèìûå ãðàíèöû áëîêîâ:
Modern Information Theory
10 íîÿáðÿ 2021 ã.
61 / 64
Ëàáîðàòîðíàÿ ðàáîòà 2. Òðàíñêîäåð äëÿ ôîðìàòà jpg
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
62 / 64
Ëàáîðàòîðíàÿ ðàáîòà 2. Òðàíñêîäåð äëÿ ôîðìàòà jpg
Òåñòîâûå èçîáðàæåíèÿ è ðàçìåðû ôàéëîâ ôîðìàòà JPG
Èçîáðàæåíèå
Ðàçìåð
JPEG, QF=80
JPEG, QF=30
airplane
× 512
594 × 400
512 × 512
490 × 733
512 × 512
1118 × 1105
768 × 512
512 × 512
768 × 512
512 × 512
510 × 383
768 × 512
629 × 794
768 × 512
1024 × 768
44079
19207
26569
12080
88465
36113
81974
35902
arctichare
baboon
cat
fruits
frymire
girl
lena
monarch
peppers
pool
sails
serrano
tulips
watch
Evgeny Belyaev (ITMO University)
512
45303
17646
440857
200860
59979
24310
43872
17578
64055
28501
47929
18746
14492
7467
105830
45512
138167
58288
85764
37972
101074
46741
Modern Information Theory
10 íîÿáðÿ 2021 ã.
63 / 64
Ëàáîðàòîðíàÿ ðàáîòà 2. Òðàíñêîäåð äëÿ ôîðìàòà jpg
Òðåáîâàíèÿ ê ïðîãðàììå è îò÷åòó
Òðåáîâàíèÿ ê ïðîãðàììå:
1
Íàïèñàòü êîäåð è äåêîäåð, êîòîðûå ðàáîòàþò êàê îòäåëüíûå ïðîãðàììû.
2
 êà÷åñòâå ïàðàìåòðà íà âõîä êîäåðà ïîäà¼òñÿ èìÿ òðàíñêîäèðóåìîãî ôàéëà â
ôîðìàòå jpg. Íà âûõîäå ïðîãðàììà âûäà¼ò ôàéë ñî ñæàòûìè äàííûìè.
3
Íà âõîä äåêîäåðà ïîäà¼òñÿ ôàéë ñî ñæàòûìè äàííûìè. Íà âûõîäå äåêîäåð âûäà¼ò
ôàéë, êîòîðûé èäåíòè÷åí èñõîäíîìó ôàéëó â ôîðìàòå jpg (áèò â áèò).
4
Àëãîðèòìû, îòíîñÿùèåñÿ íåïîñðåäñòâåííî ê êîäèðîâàíèþ è äåêîäèðîâàíèþ äîëæíû
áûòü ðåàëèçîâàíû áåç èñïîëüçîâàíèÿ ñòîðîííèõ áèáëèîòåê.
5
Ïðè óëó÷øåíèè ñæàòèÿ íà 2% è áîëåå äëÿ QF=30, íà÷èñëÿåòñÿ 10 áàëëîâ. Ïðè
óëó÷øåíèè ñæàòèÿ íà 2% è áîëåå äëÿ QF=80, íà÷èñëÿåòñÿ 10 áàëëîâ.
Òðåáîâàíèÿ ê îò÷åòó:
1
Îò÷åò â pdf ôîðìàòå, êîòîðûé âêëþ÷àåò â ñåáÿ:
I ÔÈÎ ñòóäåíòà, íîìåð ãðóïïû è çàäàíèÿ.
I Îïèñàíèå àëãîðèòìà êîäèðîâàíèÿ è äåêîäèðîâàíèÿ.
I Äëÿ êàæäîãî èç 15-òè èçîáðàæåíèé óêàçàòü ðàçìåð ñæàòîãî ôàéëà â áàéòàõ.
Äàííûå ïðåäñòàâèòü â âèäå òàáëèöû.
I Ñóììàðíîå çíà÷åíèå ñæàòîãî ðàçìåðà âñåõ ôàéëîâ â áàéòàõ.
2
Èñõîäíûé êîä êîäåðà è äåêîäåðà.
3
Èñïîëíÿåìûå ïðîãðàììû êîäåðà è äåêîäåðà, ãîòîâûìè ê çàïóñêó íà Windows 10.
Evgeny Belyaev (ITMO University)
Modern Information Theory
10 íîÿáðÿ 2021 ã.
64 / 64