Specification. Hypothesis tests and confidence intervals
Выбери формат для чтения
Загружаем конспект в формате pdf
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
SINGLE REGRESSION
Specification, Hypothesis Tests and Confidence
Intervals
Specification of Equations
Excel: Data Data Analysis
EViews: Object New object Equation
V. Ozolina Econometrics
Specification of Equations
Excel: Data Data Analysis Regression
V. Ozolina Econometrics
Specification of Equations
Excel: Data Data Analysis Regression
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.796991
R Square
0.635195
Adjusted R
Square
0.63105
Standard Error
3118.862
Observations
90
ANOVA
df
SS
1.49E+09
8.56E+08
2.35E+09
MS
1490464776
9727299.3
Coefficients
Standard Error
3313.83
1560.228
64.7576
5.231497
t Stat
2.12393914
12.3784059
Regression
Residual
Total
Intercept
W_NET_SA
1
88
89
F
Significance F
153.2249
5.69E-21
P-value
0.036481
5.69E-21
Lower 95%
213.2041
54.36109
RESIDUAL OUTPUT
Observation
Predicted
IMP_FARMAC_SA
1
13607.51
2
13894.03
Residuals
-2278.63
-3737.32
V. Ozolina Econometrics
Upper 95%
Lower 95.0%
Upper 95.0%
6414.456
213.2041
6414.456
75.1541
54.36109
75.1541
Testing if OLS Assumptions Hold
A1: E(ui) = 0
Average value of the error term is zero – it is
important, because we do not know the exact
errors
A1 will always hold, if we use constant term in
the equation
If we do not use the constant term in the
equation, we cannot test, if A1 holds!!!
V. Ozolina Econometrics
Testing if OLS Assumptions Hold
A2: Var(ui) = σ2 < ∞
Homoscedasticity
The opposite situation - heteroscedasticity
V. Ozolina Econometrics
Testing if OLS Assumptions Hold
Var(ui) = σ2 < ∞ - homoscedasticity
Problems:
Property
2 does not hold – OLS estimates of the
coefficients are no longer BLUE – coefficient
estimates are not biased, but they are not efficient
(do not have minimum variance),
Standard error values may be inaccurate
(depending on the form of heteroscedasticity –
standard errors are overvalued or undervalued)
standard errors are not usable!!!
V. Ozolina Econometrics
Testing if OLS Assumptions Hold
Var(ui) = σ2 < ∞ - homoscedasticity
How to test:
Graphical
analysis – correlation diagram of the
error terms and forecasts
Using White’s test
H0:
assumption holds, Ha: does not hold
> 0.05 →
−
< 0.05 →
V. Ozolina Econometrics
Testing if OLS Assumptions Hold:
Example
Excel
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.796991
R Square
0.635195
Adjusted R
Square
0.63105
Standard Error
3118.862
Observations
90
ANOVA
df
Regression
Residual
Total
SS
1.49E+09
8.56E+08
2.35E+09
MS
1490464776
9727299.3
Coefficients
Standard Error
3313.83
1560.228
64.7576
5.231497
t Stat
2.12393914
12.3784059
1
88
89
Intercept
W_NET_SA
F
Significance F
153.2249
5.69E-21
P-value
0.036481
5.69E-21
Lower 95%
213.2041
54.36109
RESIDUAL OUTPUT
Observation
Predicted
IMP_FARMAC_SA
1
13607.51
2
13894.03
Residuals
-2278.63
-3737.32
V. Ozolina Econometrics
Upper 95%
Lower 95.0%
Upper 95.0%
6414.456
213.2041
6414.456
75.1541
54.36109
75.1541
Testing if OLS Assumptions Hold:
Example
Graphical analysis in Excel
Is the spread of the error term
increasing or
decreasing?
V. Ozolina Econometrics
Testing if OLS Assumptions Hold:
Example
White’s test in EViews
V. Ozolina Econometrics
Testing if OLS Assumptions Hold:
Example
p-value = 0.14
0.14 > 0.05
H0 is accepted
Error term is
homoscedastic
White Heteroskedasticity Test:
F-statistic
Obs*R-squared
1.972629
3.904253
Prob. F(2,87)
Prob. Chi-Square(2)
0.145263
0.141972
Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 10/06/15 Time: 13:50
Sample: 2005M01 2012M06
Included observations: 90
Variable
Coefficient
Std. Error
t-Statistic
Prob.
C
W_NET_SA
W_NET_SA^2
4448473.
-44395.65
202.4366
47843715
380423.2
715.4161
0.092979
-0.116701
0.282963
0.9261
0.9074
0.7779
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
0.043381
0.021389
19064387
3.16E+16
-1634.879
2.241216
V. Ozolina Econometrics
Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)
9511137.
19271604
36.39731
36.48063
1.972629
0.145263
Testing if OLS Assumptions Hold
Var(ui) = σ2 < ∞ - homoscedasticity
What to do, if the assumption does not hold:
Transform
the
data, for example,
using
logarithms
V. Ozolina Econometrics
Testing if OLS Assumptions Hold
Var(ui) = σ2 < ∞ - homoscedasticity
What to do, if the assumption does not hold:
If
the heteroscedasticity form is known, we can
use GLS (Generalized Least Squares)
If there are a lot of data, but the solution is not
known, we can use HAC (Heteroscedasticity
consistent coefficient covariance)
V. Ozolina Econometrics
Testing if OLS Assumptions Hold
A3: Cov(ui,uj) = 0
There is no autocorrelation (spatial correlation)
in the error term
V. Ozolina Econometrics
Testing if OLS Assumptions Hold
Cov(ui,uj) = 0
Problems:
- no autocorrelation
Property 2 does not hold – OLS estimates of the
coefficients are no longer BLUE – coefficient
estimates are not biased, but they are not efficient
even (do not have minimum variance) if the sample
size is large,
Standard error values may be inaccurate standard
errors are not usable!!!
In case of the positive autocorrelation, the value of R2
is overstated
V. Ozolina Econometrics
Testing if OLS Assumptions Hold
Cov(ui,uj) = 0 - no autocorrelation
How to test:
Graphical
analysis
Time-sequence
plot – residuals against time
Plot residuals against their values lagged in one
period
V. Ozolina Econometrics
Testing if OLS Assumptions Hold:
Example
Graphical test in Excel
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.796991
R Square
0.635195
Adjusted R
Square
0.63105
Standard Error
3118.862
Observations
90
ANOVA
df
SS
1.49E+09
8.56E+08
2.35E+09
MS
1490464776
9727299.3
Coefficients
Standard Error
3313.83
1560.228
64.7576
5.231497
t Stat
2.12393914
12.3784059
Regression
Residual
Total
Intercept
W_NET_SA
1
88
89
F
Significance F
153.2249
5.69E-21
P-value
0.036481
5.69E-21
Lower 95%
213.2041
54.36109
RESIDUAL OUTPUT
Observation
Predicted
IMP_FARMAC_SA
1
13607.51
2
13894.03
3
14214.99
4
14211.98
Residuals
-2278.63
-3737.32
-1268.95
-1479.71
-2278.6312
V.
-3737.3173
-1268.9512
Ozolina Econometrics
Upper 95%
Lower 95.0%
Upper 95.0%
6414.456
213.2041
6414.456
75.1541
54.36109
75.1541
Testing if OLS Assumptions Hold:
Example
Graphical tests in Excel
Do errors group in a circle?
V. Ozolina Econometrics
Is there a trend?
Testing if OLS Assumptions Hold
Cov(ui,uj) = 0 - no autocorrelation
How to test:
Durbin-Watson
statistic,
Breusch-Godfrey or serial correlation LM test
H0:
assumption holds, Ha: does not hold
> 0.05 →
−
< 0.05 →
V. Ozolina Econometrics
Testing if OLS Assumptions Hold
Durbin-Watson test
H0
: Cov(ui,uj) = 0
H1 : Cov(ui,uj) > 0
The regression model includes an intercept
term
The X variables are non-stochastic
The regression does not contain the lagged
value(s) of the dependent variable
V. Ozolina Econometrics
Testing if OLS Assumptions Hold
Formula of the Durbin-Watson statistics:
∑ −
=
∑
0≤d≤4
Close to 0 Positive autocorrelation
Close to 4 Negative autocorrelation
Close to 2 No autocorrelation
V. Ozolina Econometrics
Testing if OLS Assumptions Hold
Formula of the Durbin-Watson statistics:
∑ −
=
∑
0 < d < 4, the closer to 2, the better.
If d < 2:
If d < dL: H0 is rejected – autocorrelation exists
If d > dU: H0 is accepted – autocorrelation does not
exist
If dL < d < dU: we cannot accept or reject H0
If d > 2, then instead of d we use (4 – d)
V. Ozolina Econometrics
The Durbin-Watson d Statistic
Accept H0 or H0* or both
Reject H0
Evidence of
positive
autocorrelation
Zone of
indecision
dL
Reject H0*
Zone of
indecision
dU
2
4 - dU
H0: No positive autocorrelation
H0*: No negative autocorrelation
V. Ozolina Econometrics
Evidence of
negative
autocorrelation
4 - dL
4
The Durbin-Watson d Statistic
Durbin-Watson tables provide:
Lower
limit dL
Upper limit dU
Upper and lower limits depend upon:
The
number of observations n (6 to 200)
The number of explanatory variables k (up to 20)
Significance levels (1% or 5%)
V. Ozolina Econometrics
Table of Critical Values
V. Ozolina Econometrics
Testing if OLS Assumptions Hold:
Example
Durbin-Watson test in Excel
RESIDUAL OUTPUT
1
2
3
4
5
6
Predicted
Observation IMP_FARMAC_SA Residuals
Residual (t-1)
([3]-[4])^2
[3]^2
1
13607.51 -2278.63
5192160.1
2
13894.03 -3737.32
-2278.6312 2127765.27 13967541
3
14214.99 -1268.95
-3737.3173 6092831.21 1610237.3
4
14211.98 -1479.71
-1268.9512 44421.3207 2189556.2
88
25362.48 -4292.08
-2148.6509 4594297.91 18421970
89
25333.14 -5845.61
-4292.0823 2413452.82 34171173
90
25352.4 -36.2557
-5845.6114 33748614.2 1314.4731
Sum
1195662701 856002338
DW = (sum([3]-[4])^2) : (sum[3]^2)
1.3967984
V. Ozolina Econometrics
Testing if OLS Assumptions Hold:
Example
Durbin-Watson test in Excel
RESIDUAL OUTPUT
1
2
3
4
5
6
Predicted
Observation IMP_FARMAC_SA Residuals
Residual (t-1)
([3]-[4])^2
[3]^2
1
13607.51 -2278.63
5192160.1
2
13894.03 -3737.32
-2278.6312 2127765.27 13967541
90
25352.4 -36.2557
-5845.6114 33748614.2 1314.4731
Sum
1195662701 856002338
DW = (sum([3]-[4])^2) : (sum[3]^2)
1.3967984
DW statistics = 1.4
From the table: 90 observations, 2 coefficients,
significance level 0.05 dL = 1.635, dU = 1.679
1.39 < 1.635 d < dL autocorrelation exists
V. Ozolina Econometrics
Testing if OLS Assumptions Hold:
Example
Durbin-Watson test in EViews
From the table:
90 observations,
Dependent Variable: IMP_FARMAC_SA
2 coefficients,
Method: Least Squares
Date: 10/22/12 Time: 13:02
significance
Sample (adjusted): 2005M01 2012M06
Included observations: 90 after adjustments
level 0.05
dL = 1.635,
Variable
Coefficient
Std. Error
dU = 1.679
W_NET_SA
64.75760
5.231497
C
1.39 < 1.635
d < dL
autocorrelation exists
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
3313.830
0.635195
0.631050
3118.862
8.56E+08
-850.7633
1.396798
V. Ozolina Econometrics
1560.228
t-Statistic
Prob.
12.37841
2.123939
0.0000
0.0365
Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)
22193.36
5134.666
18.95030
19.00585
153.2249
0.000000
Testing if OLS Assumptions Hold:
Example 2
Durbin-Watson test in EViews
From the table:
Dependent Variable: UNEMPL
Method: Least Squares
18 observations,
Date: 04/03/14 Time: 13:11
Sample (adjusted): 1996 2013
2 coefficients,
Included observations: 18 after adjustments
significance
Variable
Coefficient
Std. Error
t-Statistic
level 0.05
PCI
-0.462323
0.183859
-2.514550
C
9.634877
1.275415
7.554309
dL = 1.158,
dU = 1.391
R-squared
0.327225 Mean dependent var
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
0.275473
2.613244
88.77756
-34.61971
2.097416
(4 – d) =
=4 – 2.097 = 1.903
1.903 > 1.39 no autocorrelation
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)
V. Ozolina Econometrics
Prob.
0.0259
0.0000
6.913333
3.070102
4.882627
4.977034
6.322960
0.025869
Testing if OLS Assumptions Hold:
Example
Serial Correlation LM Test in EViews
V. Ozolina Econometrics
Testing if OLS Assumptions Hold:
Example
Serial Correlation LM Test in Eviews
p-value = 0.000
0.000 < 0.05
H0 is rejected
Autocorrelation exists
Breusch-Godfrey Serial Correlation LM Test:
F-statistic
Obs*R-squared
10.71071
17.94733
Prob. F(2,86)
Prob. Chi-Square(2)
0.000070
0.000127
Test Equation:
Dependent Variable: RESID
Method: Least Squares
Date: 10/07/15 Time: 10:11
Sample: 2005M01 2012M06
Included observations: 90
Presample missing value lagged residuals set to zero.
Variable
Coefficient
Std. Error
t-Statistic
Prob.
W_NET_SA
C
RESID(-1)
RESID(-2)
-0.215694
39.54523
0.192388
0.355922
4.735461
1412.212
0.101296
0.103413
-0.045549
0.028002
1.899264
3.441743
0.9638
0.9777
0.0609
0.0009
V. Ozolina Econometrics
Testing if OLS Assumptions Hold
Cov(ui,uj) = 0 - no autocorrelation
Reasons for autocorrelation:
Model
Specification Error
Under-specification
Wrong
functional form
Inertia
Data
manipulation
Monthly
to quarterly data
V. Ozolina Econometrics
Testing if OLS Assumptions Hold
Cov(ui,uj) = 0 - no autocorrelation
What to do, if the assumption does not hold:
Find
the missing factors,
Check the functional form,
If the form of autocorrelation is known, use GLS
(Generalized Least Squares),
If nothing else works, use HAC
(Heteroskedasticity consistent coefficient
covariance),
V. Ozolina Econometrics
Testing if OLS Assumptions Hold
Cov(ui,uj) = 0 - no autocorrelation
What to do, if the assumption does not hold:
Specify
a dynamic model by introducing the
lagged (past) values of y
We have to add lags until the problem is solved
V. Ozolina Econometrics
Testing if OLS Assumptions Hold:
Example
Adding lags in EViews
DW close to ideal?
Dependent Variable: IMP_FARMAC_SA
Method: Least Squares
Date: 10/06/15 Time: 12:23
Sample (adjusted): 2005M03 2012M06
Included observations: 88 after adjustments
Variable
Coefficient
Std. Error
t-Statistic
Prob.
W_NET_SA
C
IMP_FARMAC(-1)
IMP_FARMAC(-2)
35.29715
2981.622
0.120906
0.286676
8.830164
1577.625
0.091080
0.091618
3.997337
1.889944
1.327470
3.129050
0.0001
0.0622
0.1879
0.0024
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
0.659358
0.647193
2902.612
7.08E+08
-824.4760
1.919920
V. Ozolina Econometrics
Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)
22453.60
4886.751
18.82900
18.94161
54.19785
0.000000
Testing if OLS Assumptions Hold:
Example
Adding lags in EViews
Breusch-Godfrey Serial Correlation LM Test:
LM test:
p-value = 0.79
0.79 > 0.05
autocorrelation
problem is
solved
F-statistic
Obs*R-squared
0.216013
0.461207
Prob. F(2,82)
Prob. Chi-Square(2)
0.806182
0.794054
Test Equation:
Dependent Variable: RESID
Method: Least Squares
Date: 10/07/15 Time: 12:27
Sample: 2005M03 2012M06
Included observations: 88
Presample missing value lagged residuals set to zero.
Variable
Coefficient
Std. Error
t-Statistic
Prob.
W_NET_SA
C
IMP_FARMAC(-1)
IMP_FARMAC(-2)
RESID(-1)
RESID(-2)
3.111431
223.9373
-0.101750
0.051100
0.141651
-0.038520
11.93342
1639.527
0.184739
0.181037
0.217847
0.207240
0.260733
0.136587
-0.550775
0.282263
0.650234
-0.185873
0.7950
0.8917
0.5833
0.7785
0.5174
0.8530
V. Ozolina Econometrics
Testing if OLS Assumptions Hold
A5: ut is normally distributed
Problems:
Several tests are related to the normality assumption,
but it usually does not cause problems
What to do, if the assumption does not hold:
Nothing, if there are a lot of data
If there are separate extreme values, we can use
dummies
V. Ozolina Econometrics
Evaluation of the Quality of the
Equation
Measures of Fit
Hypothesis testing for coefficients
V. Ozolina Econometrics
Measures of Fit
Coefficient of determination R2 – the fraction of
the sample variance of Yi explained by Xi
Yi
can be split into explained and unexplained
part:
0 ≤ R2 ≤ 1
If R2 = 0, Xi explains none of the variation of Yi
If R2 = 1, Xi explains all the variations of Yi:
Standard error SY,X – spread of Yi around the
regression line (magnitude of regression error)
The
lower the error, the better.
V. Ozolina Econometrics
Number of crimes per 10 000 residents
Components of Total Variation
300
Yi
280
Ŷi = βˆ0 + βˆ1X i
Unexplained
260
Explained
240
Total
220
200
180
160
140
120
1000
2000
3000 4000 5000
GDP per capita, Ls
V. Ozolina Econometrics
6000
7000
8000
Coefficient of Determination
Ratio of explained to the total sum of
squares
Total Sum of Squares
Explained Sum of Squares
Residual Sum of Squares
TSS = ESS + RSS
V. Ozolina Econometrics
2
R
Coefficient of Determination R2 ...
R2 = (rY,X)2
GDP variations explain
59.2% of variations
of crimes
V. Ozolina Econometrics
Standard Error SY,X ...
Standard Error of Regression (SER) or
Standard Error of Equation (SEE)
Standard error SY,X is an estimator of the
standard deviation of the regression error ui.
SY,X is measured in the units of the dependent
variable Yi.
It is assumed that
, where
V. Ozolina Econometrics
Measures of Fit: Example
In Excel: Data Analysis Regression
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.796991
R Square
0.635195
Adjusted R
Square
0.63105
Standard Error
3118.862
Observations
90
V. Ozolina Econometrics
Measures of Fit: Example
In EViews
Dependent Variable: IMP_FARMAC_SA
Method: Least Squares
Date: 10/22/12 Time: 13:02
Sample (adjusted): 2005M01 2012M06
Included observations: 90 after adjustments
Variable
Coefficient
Std. Error
t-Statistic
Prob.
W_NET_SA
C
64.75760
3313.830
5.231497
1560.228
12.37841
2.123939
0.0000
0.0365
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
0.635195
0.631050
3118.862
8.56E+08
-850.7633
1.396798
Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)
V. Ozolina Econometrics
22193.36
5134.666
18.95030
19.00585
153.2249
0.000000
Hypotheses Tests for Coefficients
The main idea – if the estimated value of the
coefficient is valid or is the value considerably
different
Usually it is applied to evaluate if the chosen
factor is statistically significant and thus usable
in the equation
V. Ozolina Econometrics
Two-Sided Hypotheses for β1
Null hypothesis H0: β1 = β1,0 – that true
population slope β1 takes on some specific
value, β1,0
Two-sided alternative hypothesis H1: β1 ≠ β1,0
– β1 does not equal β1,0
V. Ozolina Econometrics
Two-Sided Hypotheses for β1
To test that, we follow 3 steps:
Compute standard error of β1 estimator or
standard error
, where
Compute t-statistic
Compute p-value
V. Ozolina Econometrics
Two-Sided Hypotheses for β1
p-value is the probability of observing a value
of
at least as different from β1,0 as the
estimate actually computed (
), assuming
that the null hypothesis is correct
p-value
V. Ozolina Econometrics
Two-Sided Hypotheses for β1
Null hypothesis is rejected, if the value of p-value
is very small (usually smaller than 5%)
Null hypothesis is rejected, if calculated value of tstatistic is larger than the critical value of t-statistic
Critical value of t-statistic can be found in the
Student t Distribution tables, choosing appropriate
degrees of freedom (in single regression = n-2)
and probability or p-value (usually 0.05 or 0.01)
In Excel we can use function TINV or T.INV.2T
V. Ozolina Econometrics
Two-Sided Hypotheses for β1:
Example
Intercept
W_NET_SA
In Excel: Data Analysis Regression
Coefficients
3313.83
64.7576
Intercept
W_NET_SA
Standard Error
1560.228
5.231497
t Stat
2.12393914
12.3784059
P-value
0.036481
5.69E-21
Lower 95%
213.2041
54.36109
Upper 95%
6414.456
75.1541
Coefficients Standard Error
t Stat
3313.83
1560.228 2.12393914
64.7576
5.231497 12.3784059
V. Ozolina Econometrics
Lower 95.0%
213.2041
54.36109
Upper 95.0%
6414.456
75.1541
P-value
0.036481
0.000000
Two-Sided Hypotheses for β1:
Example
In EViews
Dependent Variable: IMP_FARMAC_SA
Method: Least Squares
Date: 10/22/12 Time: 13:02
Sample (adjusted): 2005M01 2012M06
Included observations: 90 after adjustments
Variable
Coefficient
Std. Error
t-Statistic
Prob.
W_NET_SA
C
64.75760
3313.830
5.231497
1560.228
12.37841
2.123939
0.0000
0.0365
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat
0.635195
0.631050
3118.862
8.56E+08
-850.7633
1.396798
Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)
V. Ozolina Econometrics
22193.36
5134.666
18.95030
19.00585
153.2249
0.000000
Two-Sided Hypotheses Concerning
β1...
Example – import of pharmaceutical products
depending on wages
y = 64.758x + 3313.8 + u
Standard error of coefficient β1 = 5.23 t-stat =
(64.758-0)/5.23 = 12.4
Critical value of t-statistic:
Degrees of freedom = n – 2 = 90 – 2 = 88
probability (also α) = 0.05
Critical value – 1.987
12.4 > 1.987 reject null hypothesis
(p-value < 0,0000)
Coefficient β1 is statistically significant
V. Ozolina Econometrics
Two-Sided Hypotheses Concerning
β1
Reporting regression equations:
Imp_farm_sa = 64.758w_net_sa + 3313.8
SE
(5.23)
(1560.2)
R2 = 0.64; SER = 3118.9
or
Imp_farm_sa = 64.758w_net_sa + 3313.8
t-stat
(12.4)
(2.1)
R2 = 0.64 [01/2005 – 06/2013]
V. Ozolina Econometrics
One-Sided Hypotheses for β1
Test, whether the value can be >0 or <0
(depending on the direction of the factor)
Rarely used in practice
V. Ozolina Econometrics
Hypotheses for the Intecrept β0
Procedures are the same as when testing β1,
however, it is done only if you have a specific
null hypothesis in mind.
V. Ozolina Econometrics
Confidence Intervals for
Regression Coefficients
It is possible to use the OLS estimator and its
standard error to construct a confidence
intervals for regression coefficients with a
large degree of confidence
95% confidence interval for β1 means that:
It
is the set of values of β1 that cannot be rejected
using a two-sided hypothesis test with a 5%
significance level
It is an interval that has a 95% probability of
containing the true value of β1
V. Ozolina Econometrics
Confidence Intervals for
Regression Coefficients
! ∓ 1.987'(( ! )
y = 64.758x + 3313.8 + u
95% confidence interval for slope is
[64.758
– 1.987*5.23; 64.758 + 1.987*5.23]
[54.36; 75.15]
V. Ozolina Econometrics
Confidence Intervals for
Regression Coefficients: Example
Intercept
W_NET_SA
In Excel: Data Analysis Regression
Coefficients
3313.83
64.7576
Standard Error
1560.228
5.231497
t Stat
2.12393914
12.3784059
P-value
0.036481
5.69E-21
Lower 95%
213.2041
54.36109
Lower 95% Upper 95%
213.2041
6414.456
54.36109
75.1541
V. Ozolina Econometrics
Upper 95%
6414.456
75.1541
Lower 95.0%
213.2041
54.36109
Upper 95.0%
6414.456
75.1541