Плоская система сходящихся сил.
Выбери формат для чтения
Загружаем конспект в формате doc
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
Лекция №2 Плоская система сходящихся сил.
Цель: Изучить плоскую систему сходящихся сил и ее равновесие.
Воспитательная цель: Показать применение математических методов при решении технических задач.
Тема 4. Системы сил и условия их равновесия
Плоская система сходящихся сил и условие ее равновесия
Плоской системой сходящихся сил называется система сил, линии действия которых лежат в одной плоскости и пересекаются в одной точке (рис. 1.12).
Чтобы выяснить, будет ли данное тело находиться в равновесии под действием плоской системы сходящихся сил, необходимо найти ее равнодействующую силу.
Если равнодействующая равна нулю, система находится в равновесии, если не равна нулю — не находится в равновесии. Существует два способа определения равнодействующей силы плоской системы сходящихся сил: геометрический и аналитический.
Геометрический способ определения равнодействующей — построение силового многоугольника: в произвольно выбранную точку переносится объект равновесия, в эту точку помещается начало первого вектора, перенесенного параллельно самому себе; к концу первого вектора переносится начало второго вектора, к концу второго — начало третьего и т.д.
Если построенный силовой многоугольник окажется незамкнутым, значит, данная система сил не находится в равновесии. В этом случае вектор равнодействующей силы соединит начало первого вектора с концом последнего (рис. 1.13, а).
Геометрическое условие равновесия плоской системы сходящихся сил заключается в замкнутости силового многоугольника, т.е. при построении силового многоугольника конец последнего вектора совпадает с началом первого (рис. 1.13,6).
Аналитический способ определения равнодействующей: все силы проектируются на две взаимно перпендикулярные оси координат, а затем находится алгебраическая сумма проекций всех сил на ось х и ось у. Если алгебраическая сумма проекций всех сил равна нулю, данная система сил находится в равновесии. Аналитическое условие равновесия плоской системы сходящихся сил:
Осью координат называется произвольно выбранный направленный отрезок прямой (рис. 1.14).
Проекция силы на ось координат — отрезок оси, отсекаемый перпендикулярами, опущенными из начала и конца вектора (рис. 1.15).
Плоская система пар сил и условие ее равновесия
Если на тело, закрепленное в некоторой точке А, действует сила F , то тело повернется относительно этой точки. Вращательное движение тела характеризуется вращающим моментом М.
Моментом силы F относительно точки А называется величина, численно равная произведению силы на плечо (рис. 1.16):
где l— плечо (перпендикуляр, опущенный из точки на линию действия силы). За единицу вращающего момента принимается 1 Нм: 1кНм=103Нм.
Парой сил называется система двух сил, равных по величине, противоположных по направлению и не лежащих на одной прямой (рис. 1.17).
Пара сил оказывает на тело вращающее действие, которое характеризуется вращающим моментом М.
Вращающий момент пары сил равен произведению одной из сил пары на плечо:
где h — плечо пары сил (перпендикуляр, восстановленныймежду линиями действия сил). Пара сил на схемах изображается дугообразной стрелкой (рис. 1.18). Пару сил нельзя заменить одной равнодействующей силой. Пара сил не имеет проекций на оси координат. Если на тело действует несколько пар сил, то их можно заменить одной равнодействующей парой, момент которой равен алгебраической сумме моментов слагаемых пар сил, действующих на тело (рис. 1.19):
Две пары сил называются эквивалентными, если они оказывают на тело одинаковое действие. У эквивалентных пар сил вращающие моменты должны быть одинаковы как по величине, так и по направлению.
Условие равновесия плоской системы пар сил: алгебраическая сумма моментов слагаемых пар сил должна быть равна нулю, т.е.