Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Ядерная физика

В ядерной физике исследуется субатомная структура вещества. Характерные размеры этой структуры малы не только в сравнении с макроскопическими расстояниями, но и в сравнении с размерами ядра. Физические явления, которые происходят на таких малых расстояниях, возможно изучать только при столкновении распаде атомных ядер и элементарных частиц. Изучение этих процессов имеет важное значение для ядерной физики, поскольку полученная информация представляет собой основной источник знаний о составе, строении и свойствах атомных ядер та элементарных частиц.

Основными составляющими любого эксперимента в ядерной физике являются источники частиц, мишени и детекторы. Источниками частиц могут быть радиоактивные препараты, космические лучи, ядерные реакторы и ускорители. Радиоактивные препараты могут быть естественными и искусственными. Последние получают облучение некоторых мишеней пучками частиц от ядерных реакторов и ускорителей. Радиоактивные препараты излучают частицы с энергией в несколько мегаэлектрон-вольт (МэВ), которой недостаточно для исследования большинства ядерных процессов. По этой причине излучение радиоактивных препаратов, в основном, используется для изучения самого явления радиоактивности и у прикладных науках.

Замечание 1

Почти к $50$-м годам $XX$ века основным источником высоких энергий было космическое излучение. Поверхность Земли достигает вторичное космическое излучение, которое возникает в последствии преобразований первичных космических частиц при взаимодействии с атмосферой. Космическое излучение состоит, в основном, с протонов и $\alpha$ – частиц. Энергетический спектр первичного космического излучения чрезвычайно широк. Он охватывает энергии от десятков мегаэлектрон-вольт до очень высоких энергий. Средняя энергия космических частиц $10^{10}$ эВ (зарегистрированы события, обусловлены первичными космическими частицами порядка $10^{20}$ эВ). До создания ускорителей именно в космическом излучении были открыты новые элементарные частицы: позитроны, мюоны, пионы и др. Космическое излучение, как источник частиц высокой энергии, имеет ряд существенных недостатков – невозможность контролировать события с участием частиц со сверхвысокой энергией и чрезвычайно высокая стоимость экспериментов.

«Ядерная физика» 👇
Помощь эксперта по теме работы
Найти эксперта
Решение задач от ИИ за 2 минуты
Решить задачу
Помощь с рефератом от нейросети
Написать ИИ

Ядерные реакторы, как источники частиц высоких энергий, представляют собой мощные источники нейтронов, энергии которых создают непрерывный спектр от сотых электрон-вольта до десятков мегаэлектрон-вольт. Ядерные реакторы могут использоваться как источники антинейтрино.

Ускорители заряженных частиц

В ядерных исследованиях основными источниками энергии является ускорители. Увеличение энергии заряженных частиц в ускорителях происходит следствии действия на них электрического поля. Ускорители частиц не должны испытывать столкновения с молекулами воздуха. С этой целью их ускоряют у вакууме, а по этому все ускорители являются вакуумными установками. По способу разгона частиц ускорители могут быть нерезонансными и резонансными. По форме траектории движения ускоренных частиц ускорители делят на линейные и циклические.

Ускорители – очень сложные установки. По оборудованию и принципу действия они относятся к физической электронике и радиотехнике сверхвысоких частот. Поскольку роль ускорителей у ядерной физике и физике элементарных частиц ключевая, то остановимся на рассмотрении основных принципов их работы. Кроме физики ускорители используются в химии, биологии, геофизике, медицине и др.

В зависимости от ускоряемых частиц разработано разные типы ускорителей. Например, ускорители для протонов, $\alpha$ – частиц, тяжелых ионов непригодны для ускорения электронов. Энергия ускоренных частиц меняется в пределах от нескольких МэВ до сотен ГэВ. Верхняя граница определяется не принципиальными затруднениями, а уровнем развития техники.

Замечание 2

Первым ускорителем, который еще с начала $30$-х годов $XX$ века имел практическое применение в физике, является электростатический генератор Ван-де-Граафа. Обычные генераторы Ван-дер-Граафа дают возможность получить напряжение до $2-5$МВ, а модифицированные – до $15-20$ МВ. Преимуществом генератора Ван-де-Граафа является возможность получать значительные токи в пучку при высоких КПД (ток достигает нескольких сотен микроампер). Недостатком генератора является жесткое ограничение энергии пучка сверху, но он обеспечивает самую высокую степень монохроматичности пучка по сравнению с другими ускорителями.

Линейные ускорители принадлежат к резонансным ускорителям, поскольку в них для ускорения используются высокочастотные поля, частота которых строго согласуется со скоростью ускоренной частицы. Самым простым с таких ускорителей является ускоритель Видероэ, в котором трубчатые электроды расположены один за одним у вакуумном цилиндре. Трубчатые электроны через один соединенные с одним полюсом генератора переменного напряжения, другие – с другим полюсом. Ускоритель является импульсным, т.е. не создает непрерывный поток частиц.



Рисунок 1.

Будем считать, что ускоренными частицами являются протоны, которые влетают слева и движутся внутри первой дрейфовой трубки (рис. а). При движении протона в промежутке между электродами $1$ и $2$ происходит его ускорение. Поток ускоренных частиц движется внутри второй дрейфовой трубки. Пролетая в ней на протоны не действуют никакие силы, т.к. электрическое поле внутри трубки отсутствует. Продолжая свое движение, протоны попадают у промежуток между $2$ и $3$. За время, на протяжении которого частицы пролетают вторую дрейфовую трубку, потенциалы на электродах меняются так, что направление электрического поля потенциалы определяются нижним знаком (рис. б). Идея этого метода лежит в том что напряжение меняется за то время, пока протоны находятся внутри той или иной трубки. По этой причине этот метод называется резонансным. Длина дрейфовых трубок с ростом их номера увеличивается. Поскольку частицы движутся в каждой дрейфовой трубке с увеличением скорости, то они должны пролетать все трубки за одно и то же врем, которое равно половине периоду изменения ускорительного напряжения.

Проект линейного резонансного ускорителя, в котором дрейфовые трубки не соединены с генератором высокого напряжения предложил и применил Л. Альверс. Его ускоритель представляет собой цилиндрическую трубку (объемный резонатор), в которой возбуждается стоячая электромагнитная волна, в которой вектор напряженности электрического поля параллельный оси трубки. Электрическое поле в таком резонаторе меняется по закону $E=A(r)cosKx cos\omega t$, где координата x отсчитывается вдоль трубы, амплитуда $A(r)$ зависит от расстояния $r$ до оси резонатора. Частота $\omega$ должна удовлетворять условия, при которых в трубке можно возбудить стоящие волны с определенными характеристиками. Такого ограничения на частоту не было в ускорителях Видероэ, в узлах $1, 2, 3…$ напряженность электрического поля равна нулю. Через каждый полупериод направление вектора напряженности электрического поля меняется на противоположный.



Рисунок 2.

Пусть в таком поле протон движется с постоянной скоростью $\nu$ и находится в точке $A$ у тот момент времени, когда напряженность электрического поля максимальна. Тогда частица будет ускорятся, а ее энергия будет увеличиваться. Предположим, что через четверть периода она окажется в узле $1$, где $E=0$. В этот момент электрическое поле меняет напряжение на противоположное и ускоряет частицу между узлами $1$ и $2$. К узлу $2$ частица должна подходить в момент времени, когда снова происходит изменение напряженности электрического поля. При реальном движении частица должна проходить и через ускорительные и через замедляющие участки. Для преодоления этого на замедляющие участки поместил дрейфовой трубки. Дрейфовые трубки не присоединялись к источнику высокого напряжения, они заряжались переменным электромагнитным полем.

Для ускорения частиц можно использовать только одну сопутствующую волну, убрав вред от встречной волны. Такой ускоритель назван ускорителем с бегущей волной. Самый больший ускоритель с бегущей волной для ускорения электронов до $22,3$ ГэВ построен в Стэнфорде (США), его длина $3,05$ км. На основе этого ускорителя созданы установки для встречных электрон-позитронных пучков. Электроны и позитроны ускоряются в линейном ускорителе, после чего их траектории разводятся по разным кругам, в местах их пересечения происходят встречные столкновения.

Несмотря на то, что линейные ускорители не могут давать частицам такие большие энергии, которые используются в ядерной физике, они пока что остаются важными установками для ядерных исследований, по той причине, что заряженные частицы в них меньше теряют энергии на излучение. В циклических ускорителях используется совместное действие на заряженную частицу электрического и магнитного полей. Электрическое поле ускоряет частицы, а магнитное удерживает их на определенной траектории и многократно возвращает в ускорительное поле.

Наблюдение и регистрация микрочастиц

Детекторами микрочастиц являются приборы, с помощью которых их находят и изучают характеристики. Основной сложностью определения микрочастиц находится в том, что их действие на детективное вещество очень мало. Чтоб определить это действие необходимо значительное усиление микроскопического эффекта в макроскопический сигнал. Действие детекторов базируется на ионизации или возбуждении атомов вещества детектора ускоренными заряженными частицами. Незаряженные частицы (γ-кванты, нейтроны, нейтрино и т.д.) не ионизируют атомов вещества и проявляют себя через вторично заряженные частицы, которые возникают при взаимодействии нейтральных частиц с веществом. Все детекторы можно поделить на три группы:

  • масс-анализаторы;
  • счетчики или электронные детекторы;
  • трековые детекторы и годоскопические камеры.

Масс-анализаторы используют для измерения масс атомных ядер (масс-спектрографы), для изучения изотопного состава элементов (масс-спектрометры), разделения изотопов по массах (масс-сепараторы).

В трековых счетчиках регистрируется след, оставленный заряженной частицей. К трековым детекторам принадлежат камера Вильсона, пузырьковая камера, толстошаровые фотоэмульсии, пропорциональные, стримерные и дрейфовые камеры.

Детекторы характеризируются эффективностью, пространственным распределением, раздельным временем и временем восстановления.

Воспользуйся нейросетью от Автор24
Не понимаешь, как писать работу?
Попробовать ИИ
Дата последнего обновления статьи: 25.05.2023
Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot