Источником электромагнитных волн может служить любой электрический колебательный контур или проводник с текущим по нему переменным током, поскольку для возбуждения электромагнитных волн следует генерировать в пространстве переменное электрическое или магнитное поле.
Следует отметить, что излучающая способность источника определена его формой, размерами и частотой колебаний. Для увеличения роли излучения необходимо увеличивать объем пространственной локализации поля. Это приводит к выводу о том, что для того, чтобы получить электромагнитные волны закрытые колебательные контуры не годятся.
Открытый контур Герца
Первый открытый колебательный контур создал Герц. Он представлял собой два стержня, которые разделял искровой промежуток. В такой конструкции переменное электрическое поле заполняет все окружающее контур пространство, что значительно увеличивает интенсивность электромагнитного излучения.
Колебания в открытом контуре Герца поддерживает источник ЭДС, подключенный к обкладкам конденсатора. Искровой промежуток необходим для увеличения разности потенциалов первоначального заряда обкладок.
Электромагнитные колебания в вибраторе Герца возбуждаются при помощи индуктора (рис.1). При достижении напряжением на искровом промежутке пробивного значения, появлялась искра, которая закорачивала обе половинки вибратора. В вибраторе при этом, появляются свободные затухающие колебания. Когда искра исчезала, контур размыкался и колебания завершались. Для повторения процесса необходимо было зарядить индуктор. Для регистрации электромагнитных волн Герц применял второй вибратор.
Рисунок 1. Электромагнитные колебания в вибраторе Герца возбуждаются при помощи индуктора. Автор24 — интернет-биржа студенческих работ
Шкала электромагнитных волн
Теория Максвелла показывает, что разные электромагнитные волны имеют общую природу. В этой связи все известные электромагнитные волны часто представляют в виде единой шкалы.
Деление всех электромагнитных волн в зависимости от частоты и длины волны в вакууме стало традиционным. Шкала электромагнитных волн условно делится на шесть диапазонов, это:
- радиоволны, которые бывают длинными, средними и короткими;
- инфракрасные волны;
- видимый свет;
- ультрафиолетовые волны;
- рентгеновские лучи;
- $γ$ - излучение.
Радиоволны вызываются переменными токами, которые текут в проводниках или контурах и потоками электронов (это макроизлучатели).
Инфракрасное излучение, видимый свет, ультрафиолетовое излучение порождают атомы, молекулы и заряженные частицы, перемещающиеся с большой скоростью (это микроизлучатели).
Основными источниками радиоволн на нашей планете стали разнообразные явления в области электричества, которые идут в атмосфере, солнечное излучение, радиовещатели и телестанции, системы связи и радиолокаторы.
Рентгеновское излучение порождают процессы, проходящие внутри атомов. Например, рентгеновские лучи появляются при торможении изначально ускоренных электронов, если они попадают в вещество и переходах электронов в тяжелых атомах с внешних на внутренние орбиты.
Гамма излучение имеет ядерное происхождение. Такие лучи появляются в случае перехода ядер атомов из состояний возбуждения в невозбужденные.
Некоторые диапазоны могут перекрываться, поскольку волны равных длин способны возникать в различных процессах. Например, самые короткие волны ультрафиолетового диапазона перекрываются рентгеновскими лучами с самыми длинными волнами.
В данном отношении знаменательна пограничная область инфракрасных волн и радиоволн. Вплоть до 1922 года между данными диапазонами имелся пробел. Излучение с самой короткой длиной волны рассматриваемого промежутка было молекулярного происхождения (это излучение тела с повышенной температурой), а излучение с самой длинной волной создавали макроскопические вибраторы Герца.
В настоящее время волны с длинами около миллиметра могут быть получены не только при помощи радиотехнических приборов, но и наблюдаться в молекулярных переходах.
Применение электромагнитных волн
Радиоволны применяются в самых разных областях жизни человека.
- Радиоволны используют для реализации беспроводной связи.
- Для нахождения точных расстояний используют электромагнитные волны.
- Астрономы применяют данные волны для исследования небесных тел.
- Электроагнитные излучения всех видов всех видов применяют в медицине.
Применение электромагнитных волн в медицине:
- Гамма излучение применяют в диагностике части заболеваний и терапии.
- Рентгеновские лучи ослабляются разными тканями организма по-разному, что позволяет получать рентгеновские изображения внутренних органов.
- Видимые, инфракрасные и ультрафиолетовые лучи порождают фотобиологические процессы в разных системах. Видимый свет необходим для фотосинтеза у растений.
- Тепловые эффекты, которые вызывает инфракрасное излучение используют для лечения некоторых заболеваний тканей поверхностей.
- Инфракрасные лучи активизируют метаболизм.
- Ультрафиолетовые лучи с длиной волны 315≤λ≤380 нм участвуют в процессе образования витамина D у человека.
- Короткие ультрафиолетовые лучи 200≤λ≤280 нм являются бактерицидными.
- Нагрев тканей при помощи радиоволн применяют в физиотерапии. В этом случае применяют аппараты ультравысокой частоты и индуктотермии.
При УВЧ – терапии на избранную часть тела помещают два плоских электрода (они не касаются тела). Под воздействием электромагнитной волны в тканях появляются токи проводимости и по закону Джоуля - Ленца выделяется некоторой количество теплоты ($Q$):
$Q=\frac{kE_{ef}^2V\Delta{}t}{\rho{}}\ (1)$, где:
- $ E_{ef}$ - эффективная величина напряженности электрического поля;
- $ρ$ – удельное сопротивление ткани тела;
- $V$ - объем тела, которое подвергается прогреву;
- $k$ - коэффициент пропорциональности;
- $\Delta{}t$ – время процедуры.
В индуктотермии для действия на организм применяют переменное магнитное поле большой частоты. В этом случае в проводящих ток тканях появляются вихревые токи, и их энергия переходит в тепловую. Количество теплоты, которое выделяется равно:
$Q=\frac{k}{\rho{}}{\omega{}}^2B_{ef}^2\ \Delta{}t(2),$
где $\omega{}$ – циклическая частота изменения поля.