Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Температура как мера средней кинетической энергии молекул

Основное уравнение молекулярно-кинетической теории (МКТ) газов:

(где $n=\frac{N}{V}$ -- концентрация частиц в газе, N -- количество частиц, V- объем газа, $\left\langle E\right\rangle \ $-средняя кинетическая энергия поступательного движения молекул в газе, $\left\langle v_{kv}\right\rangle $- средняя квадратичная скорость, $m_0$- масса молекулы) связывает давление - макропараметр, который довольно легко измерять с микропараметрами -- средней энергией движения отдельной молекулы или, в другом написании, массой частицы и ее скоростью. Однако, измеряя только давление, невозможно определить кинетические энергии частиц в отдельности от концентрации. Следовательно, для того, чтобы в полном объеме мы имели возможность находить микропараметры, необходимо знание еще какой-то физической величины, которая связана с кинетической энергией частиц, составляющих газ. Таковой является термодинамическая температура.

Газовая температура

Для того, чтобы определить, что такое газовая температура, необходимо вспомнить важное свойство, которое говорит о том, что при равновесии средняя кинетическая энергия молекул в смеси газов одна и та же для различных компонент этой смеси. Из этого свойства вытекает то, что если два газа в разных сосудах находятся в тепловом равновесии, то средние кинетические энергии молекул этих газов одинаковы. Это свойство и используем. Кроме того, эксперименты доказали, что для любых газов (количество газов не ограничено), которые находятся в состоянии теплового равновесия, выполняется следующее соотношение:

Учитывая выше сказанное, используем (1) и (2), получим:

Из уравнения (3) получается, что величина $\theta $, которую мы вводим как температуру, измеряется, как и энергия, в Дж. На практике температура в системе СИ измеряется в кельвинах. Следовательно, введем коэффициент, который устранит это противоречие, его размерность будет $\frac{Дж}{К}$, обозначение k равен он $1,38\cdot {10}^{-23}$. Этот коэффициент называют постоянной Больцмана. Так:

«Температура как мера средней кинетической энергии молекул» 👇
Помощь эксперта по теме работы
Найти эксперта
Решение задач от ИИ за 2 минуты
Решить задачу
Помощь с рефератом от нейросети
Написать ИИ
\[\theta =kT\ \left(4\right),\]

где T -- термодинамическая температура в кельвинах.

И ее связь со средней кинетической энергией движения молекул газа очевидна:

\[\left\langle E\right\rangle =\frac{3}{2}kT\ \left(5\right).\]

Уравнение (5) показывает, что средняя энергия теплового движения молекул прямо пропорциональна температуре газа. Температуру назвали абсолютной. Ее физический смысл в том, что она определяется средней кинетической энергией приходящейся на одну молекулу. Это с одной стороны. С другой, температура является характеристикой системы в целом. Так уравнение (5) связывает параметры макромира с параметрами микромира. Говорят, что температура является мерой средней кинетической энергии молекул. Мы можем измерить температуру системы, а за тем вычислить энергию молекул.

Абсолютный ноль температур

В состоянии термодинамического равновесия все части системы имеют одинаковую температуру. Температура, при которой средняя кинетическая энергия молекул равна нулю, давление идеального газа равно нулю, называют абсолютным нулем температур. Абсолютная температура не может быть отрицательной.

Пример 1

Задание: Вычислить среднюю кинетическую энергию поступательного движения молекулы кислорода при температуре T=290K. Среднюю квадратичную скорость капельки воды диаметра d=${10}^{-7}м$, взвешенной в воздухе.

Решение:

Найти среднюю кинетическую энергию движения молекулы кислорода можно используя уравнение, связывающее ее (энергию) и температуру:

\[\left\langle E\right\rangle =\frac{3}{2}kT\left(1.1\right).\]

Поведем расчет, так как все величины заданы в СИ:

\[\left\langle E\right\rangle =\frac{3}{2}\cdot 1,38\cdot {10}^{-23}\cdot {10}^{-7}=6\cdot {10}^{-21}\left(Дж\right).\]

Приступим ко второй части задачи. Капельку воды, которая взвешена в воздухе, можно считать шаром (рис.1). Следовательно, массу капельки найдем как $m=\rho \cdot V=\rho \cdot \pi {\frac{d}{6}}^3.$

Температура как мера средней кинетической энергии молекул

Рис. 1

Рассчитаем массу капельки воды, из справочных материалов плотность воды при нормальных условиях равна $\rho =1000\frac{кг}{м^3}$:$\ тогда$

\[m=1000\cdot \frac{3,14}{6}{{(10}^{-7})}^3=5,2\cdot {10}^{-19}\ \left(кг\right)\]

Масса капельки очень мала, следовательно, саму капельку можно сравнить с молекулой газа и применить для расчета средней квадратичной скорости капли формулу:

\[\left\langle E\right\rangle =\frac{m{\left\langle v_{kv}\right\rangle }^2}{2}\ \left(1.2\right),\]

где $\left\langle E\right\rangle $ мы уже рассчитали, а из (1.1) очевидно, энергия не зависит от вида газа, зависит только от температуры, следовательно, мы можем использовать полученное значение энергии. Выразим из (1.2) скорость:$\ \cdot $

\[\left\langle v_{kv}\right\rangle =\sqrt{\frac{2\left\langle E\right\rangle }{m}}=\sqrt{\frac{6\cdot 2\left\langle E\right\rangle }{\pi \rho d^3}}=3\sqrt{\frac{2kT}{\pi \rho d^3}}\ \left(1.3\right)\]

Проведем расчёт:

\[\left\langle v_{kv}\right\rangle =\sqrt{\frac{2\cdot 6\cdot {10}^{-21}}{5,2\cdot {10}^{-19}}}=0,15\ \left(\frac{м}{с}\right)\]

Ответ: Средняя кинетическая энергия поступательного движения молекулы кислорода при заданной температуре равна $6\cdot {10}^{-21}\ Дж$. Средняя квадратичная скорость капельки воды при заданных условиях равна 0,15 м/с.

Пример 2

Задание: Средняя энергия поступательного движения молекул идеального газа равна $\left\langle E\right\rangle .\ $Давление газа p. Найдите концентрацию частиц газа.

Решение:

За основу для решения задачи возьмет уравнение состояния идеального газа:

\[p=nkT\ \left(2.1\right).\]

К нему добавим уравнение связи средней энергии поступательного движения молекул и температуры системы:

\[\left\langle E\right\rangle =\frac{3}{2}kT\ \left(2.2\right)\]

Из (2.1) выразим искомую концентрацию:

\[n=\frac{p}{kT}\ \left(2.3\right)\]

Из $\left(2.2\right)\ $выразим $kT$:

\[kT=\frac{2}{3}\left\langle E\right\rangle \ \left(2.4\right).\]

Подставим (2.4) в (2.3):

\[n=\frac{3p}{2\left\langle E\right\rangle }\]

Ответ: Концентрация частиц газа может быть найдена как $n=\frac{3p}{2\left\langle E\right\rangle }$.

Дата последнего обновления статьи: 18.12.2024
Найди решение своей задачи среди 1 000 000 ответов
Крупнейшая русскоязычная библиотека студенческих решенных задач
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot