Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Токи в газах

Условия существования токов в газах

Газ, в котором нет заряженных частиц, не является проводником электрического тока (он изолятор). Газ будет проводником только в том случае, если возникнут носители электрических зарядов (свободные электроны и ионы), то есть газ будет ионизирован. Положительные ионы могут быть однозарядными и многозарядными, это зависит от количества потерянных электронов. Отрицательные ионы, обычно однозарядны, образованы присоединением одного электрона к атому.

Так, необходимо существование постороннего фактора ионизации, не связанного с наличием электрического поля для того, чтобы газ являлся проводником. Это может быть, например, высокая температура, излучение, столкновения атомов газа с быстро движущимися элементарными частицами. Надо отметить, что и в нормальных условиях газы, например воздух, имеют электрическую проводимость, правда, весьма малую. Эта проводимость вызвана излучением радиоактивных веществ, которые присутствуют на поверхности Земли, и космическими лучами, которые приходят на планету из пространства. В том случае, если напряжённость поля мала, то течение тока через газ останавливается практически сразу, как перестает работать внешний фактор ионизации. Подобный ток называют несамостоятельным.

Определение 1

Ионизацию газа, которая появляется как результат вырывания электронов из молекул и атомов самого газа называют объемной ионизацией. Кроме объемной ионизации выделяют поверхностную ионизацию. При таком типе ионизации, ионы и электроны попадают в газ со стенок сосуда, в котором он находится. Или с поверхности тел, которые в газ помещаются.

После того, как прекращает действовать ионизирующий фактор, положительные и отрицательные ионы газа объединяются и образуют нейтральные молекулы. Этот процесс носит название -- рекомбинация. В результате рекомбинации проводимость газа возвращается к первоначальному значению. При этом проводимость газа уменьшается постепенно.

В том случае, когда напряженность поля довольно большая, то само поле может вызывать ионизацию газа, при которой газ становится проводником. В таких условиях ток называют самостоятельным. Универсальной зависимости силы самостоятельного тока от напряжения не выявлено. Все определяют конкретные условия. Сила самостоятельного тока может и увеличиваться и уменьшаться с ростом напряжения.

«Токи в газах» 👇
Помощь эксперта по теме работы
Найти эксперта
Решение задач от ИИ за 2 минуты
Решить задачу
Найди решение своей задачи среди 1 000 000 ответов
Найти
Определение 2

Процесс прохождения электрического тока через газы называют газовым разрядом. Основными типами газового разряда являются:

  • несамостоятельный ток

  • самостоятельный ток

Несамостоятельный газовый разряд (несамостоятельный ток)

Допустим, что газ, который находится между электродами, постоянно ионизируется. Пусть $N$ -- концентрация зарядов каждого знака (или число пар ионов каждого знака), тогда ${(\frac{dN}{dt})}_{obr}$ -- скорость изменения (образования) концентрации зарядов внешним источником ионизации. Параллельно с процессом ионизации идет процесс рекомбинации.

Если внешнего поля нет, то через некоторое время устанавливается динамическое равновесие, при котором скорость образования ионов становится равной скорости рекомбинации. При этом $N=N^+=N^-$, где полагаем, что ионы однозарядные. В равновесии можно записать, что:

где $r$ -- коэффициент рекомбинации, концентрация ионов одного знака равна:

Когда присутствует внешнее электрическое поле, то часть электронов долетает до электродов и там нейтрализуется. Условием динамического равновесия в этом случае станет выражение:

где $(\frac{dN}{dt})$- число пар ионов исчезающих в результате нейтрализации на электродах в единицу времени.

Плотность тока определяется как:

где $v_d=bE$- скорость дрейфа заряда в электрическом поле, $b^+,\ b^-$ - подвижности положительных и отрицательных зарядов. В таком случае, равенство (2) перепишем в виде:

Формула (3) эквивалентна закону Ома только в том случае, если выражение $q\left(b^++\ b^-\right)N$ не зависит от $E$ и $j$. В газах зависимость $q\left(b^++\ b^-\right)N$ обычно существует, поэтому выражение (4) не эквивалентно закону Ома.

В том случае, если расстояние между электродами принять равным d, то плотность тока насыщения ($j$) можно выразить как:

если считать, что все возникающие ионы попадают на электроды раньше, чем успевают рекомбинировать. С учетом выражения (5) формулу (2) запишем как:

Рассмотрим два предельных случая. Пусть плотность ток очень мала. Этот случай соответствует малым внешним электрическим полям. В этом случае количество ионов, которые нейтрализованы на электродах существенно меньше, чем нейтрализованных за счет рекомбинации, тогда их число не изменяется. Разряд подчиняется закону Ома. На вольт -- амперной характеристике (рис.1) это соответствует участку ОА.

Другой предельный случай, когда мы получаем ток насыщения ($j_n$) из уравнения (6) при $rN^2\ll \frac{j}{qd}$, тогда:

где плотность тока насыщения ($j_n$) не зависит от внешнего поля, создается всеми ионами, которые образованы в результате работы ионизатора. Этому условию отвечает участок BC рис.1.

При промежуточных значениях напряжения внешнего поля происходит плавный переход от линейной зависимости между током и напряжением к насыщению (участок АВ).

Выражение для плотности тока, имеющее вид:

называют характеристикой несамостоятельного тока.

Самостоятельный ток

В том случае, если при плотности тока, равной току насыщения увеличивать напряженность внешнего поля, то плотность тока снова начнет расти. Это происходит от того, что электроны газа до рекомбинации с ионами успевают приобрести энергию, при которой они ионизируют молекулы газа благодаря высокой напряженности внешнего поля. Как результат, скорость ионизации зависит от напряженности внешнего поля. Появляющийся при этом ток называют самостоятельным. Начальная часть характеристики этого тока показана на рис.1 пунктиром.



Рисунок 1.

К видам самостоятельных газовых разрядов относят:

  • тлеющий разряд

  • дуговой разряд

  • искровой разряд

  • коронный разряд.

Пример 1

Задание: Как найти минимальную скорость электрона, которую он должен иметь для того, чтобы ионизировать атом азота, если потенциал ионизации для этого вещества равен $U_i=14,5\ B$.

Решение:

Основание для решения данной задачи служит закон сохранения энергии, который мы запишем в виде:

\[\frac{m_ev_{min}}{2}=q_eU_i\left(1.1\right).\]

Из уравнения (1.1) выразим искомую скорость, получим:

\[v_{min}=\sqrt{\frac{2q_eU_i}{m_e}}.\]

Из справочных материалов возьмем $m_e=9,1\cdot 10^{-31}кг$, $q_e=1,6\cdot 10^{-19}Кл$. Можем перейти к вычислениям минимальной скорости ионизации.

\[v_{min}=\sqrt{\frac{2\cdot 1,6\cdot 10^{-19}\cdot 14,5}{9,1\cdot 10^{-31}}}=2,26\cdot 10^6\left(\frac{м}{с}\right).\]

Ответ: $v_{min}=2,26•10^6\frac{м}{с}.$

Пример 2

Задание: Чем меньше давление газа при постоянной температуре, тем меньшее количество атомов имеется в единице объема этого газа, следовательно, больший путь проходит атом между двумя последовательными соударениями. Как будет изменяться напряжение пробоя газового промежутка при уменьшении давления газа?

Решение:

Данную ситуацию можно отнести к такой форме газового разряда, который называют искровым разрядом. При искровом разряде газ скачком утрачивает свои диэлектрические свойства и становится хорошим проводником. Напряженность поля, при которой происходит искровой разряд, различна для разных газов, зависит от их давления и температуры. Напряжение, при котором наступает искровой пробой, называют напряжением пробоя.

Возникновение пробоя объясняется так. В газе всегда есть некое малое число ионов и электронов. При небольших значениях напряженности приложенного поля, соударения, движущихся ионов с нейтральными молекулами можно уподобить упругим столкновениям шаров. При повышении напряженности внешнего поля кинетическая энергия движущихся ионов может стать достаточной для того, чтобы ионизировать нейтральную молекулу. Как результат, появляется новый электрон и положительный ион. Такой процесс называют ударной ионизацией. Вновь образованные ионы и электроны увеличивают количество заряженных частиц в газе, причем под воздействием поля они ускоряются и могут произвести ударную ионизацию вновь. Так, процесс усиливает сам себя. Образуется ионная лавина. Образование ионной лавины и есть процесс искрового пробоя, минимальное напряжение при котором возникает ионная лавина -- напряжение пробоя. При искровом пробое причина ионизации газа - разрушение атомов и молекул при соударениях.

При уменьшении давления газа напряжение пробоя уменьшается. Это происходит из-за того, что при большем свободном пробеге ионы могут получить требуемую для ионизации кинетическую энергию при меньшей напряженности электрического поля.

Дата последнего обновления статьи: 19.02.2024
Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot