Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Применение сверхпроводников

Особенные свойства сверхпроводников, которые используются в современных технологиях

  • Сверхпроводники имеют сопротивление около нуля, а значит, могут проводить ток без тепловых потерь, если они находятся при температурах ниже критических, в магнитных полях и токах ниже критических.

  • В том случае, если сверхпроводники находятся в магнитных полях ниже некоторого критического значения, то сверхпроводник является идеальным диамагнетиком (магнитное поле внутрь сверхпроводника не проникает).

  • Если сверхпроводник имеет форму кольца или цилиндра, то его магнитный момент изменяется дискретно (на квант магнитного потока).

  • Если частота тока ниже критической, то поверхностное сопротивление сверхпроводника в десятки и даже сотни раз меньше, чем у хороших проводников при той же температуре.

Применение сверхпроводников

Применение сверхпроводников весьма разнообразно. С их помощью можно получить большие токи, используя источник, который имеет небольшое напряжение. При этом практически отсутствуют потери на джоулево тепло, что позволяет использовать сверхпроводник в измерительных приборах. Так, чувствительность гальванометра, имеющего рамку из сверхпроводника, очень велика ($\sim {10}^{-12}B$).

В настоящее время из-за наличия сопротивления подводящих проводов потери электроэнергии составляют $30-40\%$. Если бы стало возможным передавать электроэнергию по сверхпроводящим проводам, то потери на джоулево тепло отсутствовали, что стало бы равносильно увеличению выработки электричества на треть. На основе сверхпроводников можно было бы изготавливать генераторы и электродвигатели с гораздо более высоким КПД, чем существующие сейчас.

Сильноточные технологии, которые предназначаются для устройств больших мощностей, применяются в электроэнергетике, промышленности и на транспорте. В этих отраслях сверхпроводниковые технологии ведут к созданию электрооборудования в $2-3$ раза меньшей массы, более экологичного, более надежного с большим сроком эксплуатации. Предполагается, что в электроэнергетике будет происходить постепенная замена традиционного резисторного оборудования на более дешевое и компактное сверхпроводниковое оборудование, которое существенно выше по надежности и эффективности.

«Применение сверхпроводников» 👇
Помощь эксперта по теме работы
Найти эксперта
Решение задач от ИИ за 2 минуты
Решить задачу
Найди решение своей задачи среди 1 000 000 ответов
Найти
Примечание 1

Способность сверхпроводника переходить в нормальное состояние из сверхпроводящего и обратно, под воздействием магнитного поля используют для усиления небольших постоянных токов и напряжений. В данном случае слабый постоянный сигнал подается на сверхпроводник, который находится в переменном магнитном поле. При этом напряженность магнитного поля такова, что состояния сверхпроводника чередуются: нормальное состояние -- сверхпроводящее состояние. Так получают переменный ток с частотой равной частоте магнитного поля. Для создания резонаторов высокой добротности с небольшим затуханием для изготовления стенок резонатора применяют сверхпроводники, в которых происходит малое затухание.

Примечание 2

Сверхпроводники используют для получения магнитных полей с большой индукцией. Для этого используют сверхпроводниковые сплавы с большой критической индуктивностью. Из них изготавливают проволоку для обмоток трансформаторов. В подобных обмотках создается ток высокой плотности, значит, электромагнит имеет магнитное поле большой силы. Индукция получаемых полей достигает 10Тл. В обычных обмотках из меди при магнитном поле 10 Тл выделяется огромное количество тепла, тогда как в сверхпроводниках мощность не рассеивается.

Примечание 3

С помощью сверхпроводящих соленоидов создают сверхсильные магнитные поля, которые применяют для удержания плазмы при термоядерном синтезе. Магнитные поля большой индукции необходимы для работы транспортных средств на магнитной подушке.

Принцип разрушения магнитным полем сверхпроводящего состояния полагается в основу переключающих устройств (криотронов). Пленочные криотроны имеют очень небольшие размеры, короткий интервал переключения (${10}^{-9}-{10}^{-10}c\ $).

Проблемы практического использования сверхпроводимости заключены в том, что необходимо работать в области очень низких температур. Отыскание сверхпроводящих материалов с температурой перехода в сверхпроводящее состояние около комнатной, открыло бы большие возможности применения таких материалов в науке и технике.

Примечание 4

Первые успехи в этом направлении были сделаны в 1986 г. Беднорцем и Мюллером, которые выяснили, что керамика $La-Ba-Cu-O$ становится сверхпроводником, при температуре $35 К$. За это открытие ученые были удостоены Нобелевской премии в области физики.

Изученные образцы представляли собой смесь нескольких фаз и имели поликристаллическую структуру. Большинство ученых работающих над созданием высокотемпературных сверхпроводников называют подобные материалы «керамикой».

Керамики в нормальном состоянии являются оксидами металлов. Их сложно получить в виде монокристаллов. Они в настоящее время изготавливаются в виде совокупности кристаллов (зерен) довольно слабо связанных друг с другом. В нормальном состоянии эти соединения имеют удельное сопротивление существенно большее, чем у металлов. У керамик удельное сопротивление растет с ростом температуры (при $T>T_k$). Все металлооксиды имеют слоистую структуру тетрагональной или ромбической симметрии. При переходе через температуру равную критической, кристаллическая структура высокотемпературный сверхпроводников не изменяется. Как в обычных сверхпроводниках в керамике найдена зависимость критической температуры от массы атомов, которые входят в структуру керамики (изотопический эффект). В высокотемпературных проводниках переход к состоянию с нулевым удельным сопротивлением происходит в более широком интервале температур, чем в обычных сверхпроводниках. В керамиках наблюдается эффект Мейсснера -- Оксенфельда. Для них существует критическое магнитное поле. Эти материалы относят к сверхпроводникам второго рода. Глубина проникновения магнитного поля в керамиках существенно больше, чем в низкотемпературных сверхпроводниках.

Так в конце восьмидесятых годов были открыты сверхпроводники с температурой перехода около 240 К.

Второй проблемой, сдерживающей развитие сферы применения сверхпроводниковых материалов, служит наличие критического магнитного поля и критических токов. Ограничения по критическому полю и току особенно важны при проектировании и создании сильноточных приборов.

Пример 1

Задание: На сегодняшний день самым точным прибором для измерения магнитных полей служит сверхпроводниковый квантовый интерферометр, который используют в широком диапазоне областей от прогнозирования землетрясений до медицинской диагностики. Действие этого прибора основано на эффекте Джозефсона. Объясните принцип действия этого прибора.

Решение:

Выделяют стационарный и нестационарный эффекты Джозефсона. Суть стационарного эффекта в том, что ток может течь через малый зазор между сверхпроводниками в отсутствии внешнего электрического поля. Это значит, что куперовские пары, которые переносят ток в сверхпроводнике, могут туннелировать из одного сверхпроводника в другой даже через слой диэлектрика. Туннельный ток проходит через зазор без падения напряжения, если его плотность не выше некоторой критической величины. Этот ток чувствителен к наличию магнитного поля.

В том случае, если плотность туннельного тока превышает критическое значение, то на контакте появляется разность потенциалов и при этом должен появиться высокочастотный переменный ток. Или постоянное напряжение прикладывают к сторонам зазора. Куперовские пары будут перемещаться через зазор в одном, а затем в противоположном направлении. Появляется переменный ток с частотой, зависящей от приложенного напряжения. Это нестационарный эффект Джозефсона. В этом эффекте постоянное электрическое поле может порождать переменный ток.

Изготавливается маленький контур из сверхпроводника с двумя зазорами, через которые осуществляются переходы Джозефсона. Через контур пропускают ток. Так получают прибор -- квантовый интерферометр. Ток по цепи прибора может изменяться от 0 (это случай, когда токи, идущие по двум переходам, взаимно гасятся) до максимума (токи имеют одно направление и взаимно усиливаются) и это зависит от величины внешнего магнитного поля. В настоящее время используя сверхпроводниковый квантовый интерферометр, подключив датчики можно измерить электромагнитные сигналы, которые вырабатывает мозг человека.

Пример 2

Задание: Сверхпроводящие катушки с самоиндукциями $L_1\ \ и\ L_2$ включены в цепь рис.1. Гальванический элемент имеет ЭДС равную $\mathcal E$. Найдите токи в катушках. Коэффициентом взаимной индукции катушек пренебречь.



Рисунок 1.

Решение:

За основу решения задачи примем закон Ома:

\[I=\frac{{\mathcal E}}{R+r}\left(2.1\right),\]

где $R$ -- внешнее сопротивление, $r$ -- сопротивление источника. До того как источник тока включен поток через сверхпроводящий контур ABCD равен нулю. Он сохранится и после выключения тока, то есть можно записать, что:

\[L_1I_1-L_2I_2=0\left(2.2\right).\]

Из выражения (2.2) следует, что:

\[\frac{I_1}{I_2}=\frac{L_2}{L_1}\left(2.3\right).\]

Из закона Кирхгофа имеем:

\[I_1+I_2=I\ \left(2.4\right).\]

Из уравнений (2.3) и (2.4) следует, что:

\[I_1=\frac{IL_2}{L_1+L_2},\ I_2=\frac{IL_1}{L_1+L_2}.\]

Ответ: $I_1=\frac{IL_2}{L_1+L_2},\ I_2=\frac{IL_1}{L_1+L_2}$, где $I=\frac{{\mathcal E}}{R+r}.$

Дата последнего обновления статьи: 19.02.2024
Найди решение своей задачи среди 1 000 000 ответов
Крупнейшая русскоязычная библиотека студенческих решенных задач
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot