Китайская теорема об остатках
для любого набора попарно простых чисел m1, m2, ... , mn найдется целое число x, дающее заданные остатки a1, a2, ... , an при делении на m1, m2, ... , mn, т. е. при каждом k x ≡ ak (mod mk)
совокупность трёх точек, не лежащих на одной прямой, и трёх простых дуг, соединяющих эти точки (чаще треугольник рассматривают вместе с его внутренней областью)
Из подобия треугольников АОВ и ЕАD следует, что $\frac{{\triangle v}_n}{AB}=\frac{v_1}{r}$, или, учитывая...
окружности;
${\overrightarrow{a}}_{{\mathbf \tau }} = 0$, ${\overrightarrow{a}}_n \neq 0$ -- равномерное криволинейное...
движение;
${\overrightarrow{a}}_{{\mathbf \tau }} = const$, ${\overrightarrow{a}}_n \neq 0$ -- криволинейное...
равнопеременное движение;
${\overrightarrow{a}}_{{\mathbf \tau }}$ = $f(t)$, ${\overrightarrow{a}}_n \neq 0$ -- криволинейное
Доказано существование и единственность решения задачи сопряжения для псевдопараболического и гиперболического уравнений четвертого порядка в криволинейном треугольнике с нелокальными условиями сопряжения.
Он состоит из треугольников, образующих сферу, таким образом в каждой точке сходится 5 балок, которые...
Криволинейная мебель встает лучше, но все же остается много слепых зон;
сложности с размещением окон...
большинство строительных материалов имеют прямоугольную форму, то при придании нужной формы (трапеции или треугольника
Предложен новый бикубический эрмитов элемент на прямоугольнике и дополняющие его треугольные эрмитовы элементы, в том числе на треугольнике с криволинейной стороной. Совместное использование прямоугольных и треугольных элементов позволяет применять их для решения задач в многоугольных облостях и областях с криволинейными участками границы.
для любого набора попарно простых чисел m1, m2, ... , mn найдется целое число x, дающее заданные остатки a1, a2, ... , an при делении на m1, m2, ... , mn, т. е. при каждом k x ≡ ak (mod mk)
множество, в котором не существует связного подмножества, содержащего более одной точки
выборочные квантили порядков k/100, где k = 1, 2, ... , 99
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне