В этом смысле попарно пересекающиеся множества не являются ни истинными, ни ложными (подобно любым другим... Высказывание о равнозначности попарнонепересекающихсямножеств находится на стыке формализма и истины
Рассматривается задача быстродействия в нуль с закрепленным левым концом. Динамика управляемого процесса описывается линейной нестационарной докритической системой с векторным управлением. Получено представление границы множества управляемости системы в виде объединения попарно непересекающихся гладких многообразий различной размерности.
Генерический подход к алгоритмическим проблемам предложен Мясниковым, Каповичем, Шуппом и Шпильрайном в 2003 г. В рамках этого подхода рассматривается поведение алгоритмов на множествах почти всех входов. В данной работе изучается генерическая сложность проблемы кластеризации графов. В этой задаче структура взаимосвязей объектов задаётся с помощью графа, вершины которого соответствуют объектам, а рёбра соединяют похожие объекты. Требуется разбить множество объектов на попарно непересекающиеся группы (кластеры) так, чтобы минимизировать число связей между кластерами и число недостающих связей внутри кластеров. Доказывается, что при условии P = NP и P = BPP для проблемы кластеризации графов не существует полиномиального сильно генерического алгоритма. Сильно генерический алгоритм решает проблему не на всём множестве входов, а на подмножестве, последовательность частот которого при увеличении размера экспоненциально быстро сходится к 1.
преобразование плоскости (пространства), переводящее каждую точку P в такую точку P′, лежащую на луче OP , что OP̅ · OP̅′ = c, где O — фиксированная точка (центр, или полюс инверсии) и c ≠ 0 — постоянная (коэффициент, или степень инверсии)
Оставляя свои контактные данные и нажимая «Попробовать в Telegram», я соглашаюсь пройти процедуру
регистрации на Платформе, принимаю условия
Пользовательского соглашения
и
Политики конфиденциальности
в целях заключения соглашения.
Пишешь реферат?
Попробуй нейросеть, напиши уникальный реферат с реальными источниками за 5 минут