Класс алгебраической кривой
максимальное число касательных, которые можно провести к данной алгебраической кривой из произвольной точки P плоскости, не лежащей на этой кривой
(семидефинитная квадратичная форма) квадратичная форма, значение которой сохраняет знак
Если назначить критерием качества выпуклой квадратичной аппроксимации (ВКА) сумму квадратичных уклонений параметров ВКА от параметров безусловной квадратичной аппроксимации (БКА), то наилучшую, согласно такому критерию, ВКА возможно построить в два конечных этапа. Вначале находится БКА, наилучшая согласно своему критерию качества, например по методу наименьших квадратов. На втором этапе конечным алгоритмом в выпуклом конусе положительно полуопределенных матриц находится ближайший к матрице квадратичной формы в БКА элемент, который составляет квадратичную часть лучшей ВКА. Ее линейная часть совпадает с линейной частью лучшей БКА. Приводится обоснование этого алгоритма. Исследуется влияние выбора узлов на единственность лучшей ВКА.
максимальное число касательных, которые можно провести к данной алгебраической кривой из произвольной точки P плоскости, не лежащей на этой кривой
аксиальный вектор
истинный нормальный делитель
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве