Китайская теорема об остатках
для любого набора попарно простых чисел m1, m2, ... , mn найдется целое число x, дающее заданные остатки a1, a2, ... , an при делении на m1, m2, ... , mn, т. е. при каждом k x ≡ ak (mod mk)
(семидефинитная квадратичная форма) квадратичная форма, значение которой сохраняет знак
Если назначить критерием качества выпуклой квадратичной аппроксимации (ВКА) сумму квадратичных уклонений параметров ВКА от параметров безусловной квадратичной аппроксимации (БКА), то наилучшую, согласно такому критерию, ВКА возможно построить в два конечных этапа. Вначале находится БКА, наилучшая согласно своему критерию качества, например по методу наименьших квадратов. На втором этапе конечным алгоритмом в выпуклом конусе положительно полуопределенных матриц находится ближайший к матрице квадратичной формы в БКА элемент, который составляет квадратичную часть лучшей ВКА. Ее линейная часть совпадает с линейной частью лучшей БКА. Приводится обоснование этого алгоритма. Исследуется влияние выбора узлов на единственность лучшей ВКА.
для любого набора попарно простых чисел m1, m2, ... , mn найдется целое число x, дающее заданные остатки a1, a2, ... , an при делении на m1, m2, ... , mn, т. е. при каждом k x ≡ ak (mod mk)
e число
функция ex, часто обозначаемая как exp x
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне