Геометрический ряд
числовой сходящийся ряд вида (|q| < 1): a1 + a1q + … + a1qn + …; сумма его равна a1/1 - q
такое подмножество данного кольца, которое само является кольцом относительно операций данного кольца; напр., кольцо всех четных чисел является подкольцом кольца целых чисел Z
В работе строятся так называемые кольца сходимости кольца целых многомерного локального поля. Кольцо сходимости это подкольцо кольца целых, обладающее тем свойством, что любой степенной ряд с коэффициентами из подкольца сходится при подстановке вместо переменной произвольного элемента максимального идеала. Выводятся свойства колец сходимости и явная формула для их построения. Заметим, что многомерный случай принципиально отличается от случая классического (одномерного) локального поля, где кольцом сходимости является все кольцо целых. Далее рассматривается многомерное локальное поле с нулевой характеристикой предпоследнего поля вычетов. Для каждого кольца сходимости такого поля вводится гомоморфизм, позволяющий по степенному ряду с коэффициентами из кольца построить формальную группу над тем же кольцом с логарифмом, имеющем коэффициенты из поля, причем для коэффициентов задается явная формула. Кроме того, по изогении с коэффициентами из кольца сходимости строится обобщение понятия ф...
Получены необходимые и достаточные условия сопряжённости инволюций группы GL2 над произвольным подкольцом поля Q. Показано, что если это подкольцо является (не является) 2-делимым, то число классов сопряжённых нецентральных инволюций равно 1 (соответственно 2).
числовой сходящийся ряд вида (|q| < 1): a1 + a1q + … + a1qn + …; сумма его равна a1/1 - q
способ определения множества, при котором задаются некоторые элементы определяемого множества и некоторые правила, позволяющие из имеющихся получать другие элементы этого множества; в частном случае определение понятия P (n), зависящего от натурального параметра n, протекает по следующей схеме: задаются P (0) и правило получения P (n + 1) от n и P (n); напр., факториал n! определяется так: 0! = 1, (n + 1)! = (n + 1) · n!
репер, однозначно связанный с исследуемой фигурой или ее точкой
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне