Лейбница ряд
знакочередующийся ряд 1 + 1/3 + 1/5 + 1/7 +…, сходящийся к π/4
диофантово уравнение x2 − n y2 = 1, где натуральное число n не является квадратным числом
Исследуется диофантово уравнение $x^2-y^2(k^2m^2-4m)=4t$, где числа $k,m$ нечетные, а правая часть $4t$ — достаточно маленькое натуральное число. Найдены необходимые условия разрешимости такого диофантова уравнения.
В статье предлагается алгоритм определения параметров систем квадратных уравнений при работе в поле рациональных чисел. Алгоритм основывается на известной процедуре решения уравнений Пелля.
знакочередующийся ряд 1 + 1/3 + 1/5 + 1/7 +…, сходящийся к π/4
множество, в котором не существует связного подмножества, содержащего более одной точки
процесс составления или вычисления суммы
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне