Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Гармонический осциллятор

Предмет Механика
👍 Проверено Автор24

это система, осуществляющая малые (а значит, гармонические) колебания.

Научные статьи на тему «Гармонический осциллятор»

Динамика гармонических колебаний

осциллятора, так как во втором слагаемом левой части мы имеем синус угла, вместо самого угла....
осциллятора....
Замечание 2 Система, совершающая колебания, является гармоническим осциллятором только, если потенциальная...
Получим уравнение гармонического осциллятора, если потенциальная энергия задана функцией: $U(x)=\alpha...
колебаний осциллятора в заданном случае.

Статья от экспертов

Гармонический осциллятор на плоскости Минковского

Рассмотрена задача о квантовомеханическом поведении гармонического осциллятора на плоскости Минковского с бесконечно высокими потенциальными барьерами на изотропных прямых. Описаны дискретные уровни энергии частицы.

Научный журнал

Энергия гармонических колебаний

При малых отклонениях от положения равновесия колебания обычно являются гармоническими....
Систему, которая реализует данные малые колебания, называют линейным или гармоническим осциллятором....
Примером гармонического осциллятора может служить малое тело, подвешенное на упругую пружину (Пружинный...
В полной механической энергии гармонического осциллятора выделяют: потенциальную энергию; и кинетическую...
Полная энергия системы ($E$) не изменяется, поскольку при гармонических колебаниях выполняется закон

Статья от экспертов

УРАВНЕНИЕ ЛИНДБЛАДА ДЛЯ КВАНТОВОГО ДИССИПАТИВНОГО ГАРМОНИЧЕСКОГО ОСЦИЛЛЯТОРА

Получено уравнение Линдблада для квантового гармонического осциллятора с линейной диссипацией в удобной для применений форме. Оператор уравнения содержит обычный линейный супероператор Лиувилля, включающий гамильтониан и оператор энергии диссипации, и квадратичный супероператор Линдблада. Супероператор Линдблада состоит из суммы операторов «диффузии импульса» и «диффузии координаты», действующих в фазовом пространстве, и разности операторов «скорости диссипации» импульса и координаты в фазовом пространстве. Найдено решение системы уравнений для вторых моментов координаты, импульса и их произведения, полученной из уравнения Линдблада. Выведено уравнение для плотности энтропии и показано, что плотность энтропии согласно уравнению Линдблада возрастает.

Научный журнал

Еще термины по предмету «Механика»

Аксиома III (динамика)

аксиома независимости действия сил; если на материальную точку или тело действует несколько сил, то, ускорение, получаемое точкой или телом, будет такое же, как и при действии одной силы, равной геометрической сумме сил.

🌟 Рекомендуем тебе
Смотреть больше терминов

Повышай знания с онлайн-тренажером от Автор24!

  1. Напиши термин
  2. Выбери определение из предложенных или загрузи свое
  3. Тренажер от Автор24 поможет тебе выучить термины с помощью удобных и приятных карточек
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot