Справочник от Автор24
Нужна помощь?
Найдем эксперта за 5 минут
Подобрать эксперта
+2

Динамика гармонических колебаний

Срочно нужна работа?
Мы готовы помочь!
Найти эксперта

Характер движения тела (системы тела) определяют, опираясь на законы динамики или закон сохранения энергии. При этом составляют уравнение движения тела. Если получают уравнение вида:

$\ddot{q}+\omega_0^2 q$=0 (1),

где $q$ - величина, совершающая колебаний (например, смещение от положения равновесия, скорость движения тела; заряд или др.); $\omega_0$ - циклическая частота колебаний,

то можно однозначно говорить о том, что это тело (система тел) является гармоническим осциллятором, с круговой частотой $\omega_0$, которая равна квадратному корню из коэффициента, на который умножается параметр $q$.

Приведём несколько примеров, после этого выполним обобщение результатов.

Математический маятник

Пусть материальная точка, имеющая массу $m$, подвешена на длинной нерастяжимой нити. (Длина подвеса $l$). Данная точка выполняет колебания в вертикальной плоскости (рис.1).

Математический маятник. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Математический маятник. Автор24 — интернет-биржа студенческих работ

Началом отсчета колебаний будем считать положение равновесия (точку $O$) рис.1. Величину смещения шарика по дуге определим «дуговой» координатой:

$s=l\Theta$; $\ddot{s}=l\ddot{\Theta}(2)$.

Ось $X$ направим по касательной к траектории движения шарика (рис.1). При этом проекция на эту ось силы натяжения ($\vec F$) будет равна нулю, значит в проекции на $X$ второй закон Ньютона даст нам уравнение:

$m\ddot{s}=m l\ddot{\Theta}=-mg\sin\Theta $ или

$\ddot{\Theta }+\frac{g}{l}\sin \Theta =0 (3).$

Сравнивая уравнения (3) и (1) мы видим, что уравнение (3) не является уравнением гармонического осциллятора, так как во втором слагаемом левой части мы имеем синус угла, вместо самого угла. Но при малых колебаниях можно предположить, что:

$\sin\Theta \approx \Theta $, тогда уравнение (3) переходит в:

$\ddot{\Theta }+\frac{g}{l} \Theta =0 (4),$

которое по форме совпадает с уравнением колебаний гармонического осциллятора. Из уравнения (4) мы получим, что

  • циклическая частота гармонических колебаний математического маятника равна:

    $\omega_0=\sqrt{\frac{g}{l}}(5)$;

  • период данных колебаний не зависит от амплитуды и равен:

    $T=2\pi\sqrt{\frac{l}{g}}(6).$

Колебания частицы в потенциальном поле

Рассмотрим пример колебаний малой частицы в потенциальном поле с заданной потенциальной энергией.

Допустим, что материальная точка массы $m$ выполняет колебания в поле потенциальных сил. Потенциальная энергия данной точки зависит от ее координаты $x$ и представлена функцией:

$U(x)=U_0(1-\cos (\alpha x))$, где $U_0 = const$; $\alpha = const$.

Найдем частоту колебаний частицы, если ее смещение от положения равновесия малы. Положение равновесия точки в $x=0$.

В соответствии с основным уравнением динамики мы имеем:

$m\ddot{x}=F_x (7).$

Потенциальная сила и потенциальная энергия связаны соотношением:

$F_x=-\frac{\partial U(x)}{\partial x} (8).$

Используя заданную в условии функцию $U(x)$, получим:

$ m\ddot{x}=-\alpha U_0\sin (\alpha x)(9).$

Принимая во внимание тот факт, что материальная точка совершает малые колебания, положим:

$\sin (\alpha x) \approx \alpha x $, тогда уравнение (9) приведем к виду:

$m\ddot{x}+\frac{\alpha^2U_0}{m}x=0(10).$

Из уравнения (10) следует, что круговая частота гармонических колебаний, совершаемых материальной точкой в заданном случае равна:

$\omega_0=\alpha\sqrt{\frac{U_0}{m}}(11).$

Рассмотренный математический маятник и частица в потенциальном поле – это системы, совершающие свободные колебания при отсутствии трения, происходящие в колебательной системе, которая предоставлена самой себе после выведения ее (каким- либо способом) из состояния равновесия.

Можно говорить о том, что свободные колебания каждого осциллятора, если трение отсутствует можно рассматривать как гармонические, при условии действия в этой колебательной системе квазиупругой силы.

Замечание 1

Силу будем считать квазиупругой, если она имеет направление к положению равновесия и линейно зависит от смещения из данного положения.

Квазиупругость силы – это критерий малости колебаний.

Частота и период свободных колебаний без трения зависят только от свойств самого осциллятора, не зависят, например, от начальных условий колебаний.

Энергия и уравнение движения

Уравнение колебаний получают, не только применяя уравнения динамики, но и закон сохранения энергии ($E$). С этой целью записывают выражение энергии и дифференцируют его по времени. Далее выставляется требование:

$\frac{dE}{dt}=0(12),$

так как энергия сохраняется ($E=const$).

Замечание 2

Система, совершающая колебания, является гармоническим осциллятором только, если потенциальная энергия пропорциональна квадрату смещения из положения равновесия:

$U(x)\sim x^2(13)$.

Условие (13) называют «энергетическим» условием малости колебаний.

Получим уравнение гармонического осциллятора, если потенциальная энергия задана функцией:

$U(x)=\alpha x^2$,

кинетическая энергия равна:

$E_k=\beta \dot{x}^2,$

где $x$- смещение от положения равновесия; $\alpha $ и $\beta $ постоянные большие нуля. Убедимся, что условие сохранения полной механической энергии ($E=U+E_k$) приведет к получению уравнения движения колебательной системы.

  • Найдем полную механическую энергию, как сумму потенциальной и кинетической энергии:

    $E=U+E_k=\alpha x^2+\beta \dot{x}^2 (14).$

  • Продифференцируем полную энергию ($E$) (14) по времени:

    $\frac{dE}{dt}=2\alpha x\dot{x}+2\beta\dot{x}\ddot{x}(15).$

  • Приравняем полученную производную к нулю, так как $E=const$:

    $\frac{dE}{dt}=2\alpha x\dot{x}+2\beta\dot{x}\ddot{x}=0(16).$

Из уравнения (16) следует, что равенство нулю производной ($\frac{dE}{dt}$) возможно, если :

$\ddot{x}+\frac{\alpha}{\beta}x=0 (17).$

Уравнение (17) является уравнением гармонических колебаний осциллятора в заданном случае.

При этом круговая частота колебаний составляет:

$\omega_0=\sqrt{\frac{\alpha}{\beta}}.$

Срочно нужна работа?
Мы готовы помочь!
Найти эксперта
Дата последнего обновления статьи: 22.05.2025