Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Булева алгебра (булева решетка)

Предмет Высшая математика
👍 Проверено Автор24

множество, в котором определены две коммутативные, ассоциативные, взаимно дистрибутивные и поглощающие бинарные алгебраические операции ∨, ∧ и унарная операция (дополнение) так, что при всех x, y выполнены условия (x ∧ x)∨ y = y, (x ∨ x)∧ y = y; напр., булеан некоторого фиксированного множества с операциями ∪, ∩ и C (дополнение множества)

Научные статьи на тему «Булева алгебра (булева решетка)»

Нерасширяющие алгебраические операторы

Установлено, что для универсально полной векторной решетки $E$ равносильны следующие условия: (1)~булева алгебра порядковых проекторов $\mathbb{P}(E)$ $\sigma$-дистрибутивна; (2)~любой нерасширяющий алгебраический оператор в $E$ строго диагонален; (3)~любой нерасширяющий проектор в $E$ порядково ограничен.

Научный журнал

О коатомах и дополнениях в решетках конгруэнций унаров с мальцевской операцией

Одной из важных задач универсальной алгебры является изучение решеток, естественным образом связанных с алгебрами. В работе рассматриваются алгебры {A,p,f), сигнатура которых состоит из тернарной маль-цевской операции p и унарной операции f, являющейся эндоморфизмом относительно первой операции. Изучаются свойства решеток конгруэнций алгебр {A,p,f) с мальцевской операцией р, определенной В.К. Карташовым. Эта алгебра определятся следующим образом. Пусть {A, f) произвольный унар и x,y € A. Для любого элемента x унара {A, f) через f n(x) обозначается результат п-кратного применения операции f к элементу х; при этом f 0(х) = х. Положим Ых,у = {п € N U {0} | f n(x) = f n{y)}, и k{x,y) = min M x, y, если M x, y = 0 и k(x,y) = то, если M x, y = 0. Положим далее p( x y z) если k(x' y ) ^ k(y' z) ^ ,y'’ ) у x, если k(x,y) >k(y,z). В работе описано строение коатомов в решетках конгруэнций алгебр {A, p, f) этого класса. Доказано, что решетка конгруэнций алгебры {A, p, f) не имее...

Научный журнал

Повышай знания с онлайн-тренажером от Автор24!

  1. Напиши термин
  2. Выбери определение из предложенных или загрузи свое
  3. Тренажер от Автор24 поможет тебе выучить термины с помощью удобных и приятных карточек
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot