Ниже вы узнаете, как выглядят формулы для нахождения площади прямоугольной трапеции, а также сможете воспользоваться онлайн-калькуляторами для её расчёта.
Особенность прямоугольной трапеции в том, что её высота равна стороне, расположенной перпендикулярно двум основаниям.
Для того чтобы вычислить площадь прямоугольной трапеции через 3 её стороны, воспользуйтесь нашим онлайн-калькулятором. Для расчёта введите имеющиеся данные в поля для ввода.
Площадь прямоугольной трапеции
Высота прямоугольной трапеции $h$ равна длине стороны $c$, расположенной под прямым углом к двум основаниям трапеции $a$ и $c$.
Следовательно, формула для вычисления площади прямоугольной трапеции имеет вид:
$S = \frac12 \cdot (a + c) \cdot b$, где
$a$ — малое основание;
$с$ — большее основание;
$b$ — перпендикулярная основаниям сторона.
Задача
Дана прямоугольная трапеция, сторона $b$ у которой равна $2.32$ см, сторона $a$ составляет $2.42$, и сторона $c$ равна $3.94$ см. Чему равна площадь трапеции?
Решение:
Воспользуемся приведённой выше формулой:
$S =\frac{(2.42 + 3.93) \cdot 2.32}{2} = 7.37$ кв. см.
Проверим ответ с помощью онлайн-калькулятора. Значения совпадают, а значит, решение найдено верно.
Также площадь прямоугольной трапеции можно рассчитать и по другим формулам, общим для всех видов трапеций, например, через среднюю линию и высоту. Высоту в формуле также можно заменить на сторону, перпендикулярную основаниям.
Площадь трапеции по высоте и средней линии
Формула нахождения площади трапеции по высоте и средней линии:
$S = m \cdot h$, где
$S$ - площадь трапеции,
$m$ - средняя линия,
$h$ - высота трапеции.
Другой способ расчёта площади прямоугольной трапеции — через длины оснований и два угла, расположенных при одном основании.
Площадь трапеции через ее основание и углы
Формула нахождения площади трапеции через ее основание и углы при основании:
$S = \frac12 \cdot (b^2 - g^2) \cdot \frac{\sin (α) \cdot \sin (γ)}{\sin (α + γ)}$, где
$S$ - площадь трапеции,
$b$ - большее основание,
$g$ - малое основание,
$α$ - первый угол при основании,
$γ$ - второй угол при основании.
Также площадь прямоугольной трапеции можно найти через диагонали и угол между ними.
Площадь трапеции по диагонали и углу между диагоналями
Формула нахождения площади трапеции по диагонали и углу между диагоналями:
$S =\frac12 \cdot d1 \cdot d2 \cdot \sin (α)$, где
$S$ - площадь трапеции,
$d1$ - первая диагональ,
$d2$ - вторая диагональ,
$α$ - угол между диагоналями.
Рассмотрим пример.
Задача
Дана прямоугольная трапеция с диагоналями $d1$ и $d2$, равными $2.22$ см и $2.64$ см. Угол между диагоналями $α$ равен $56°$. Чему равна площадь прямоугольной трапеции?
Решение:
Синус заданного угла $α$ равен $0.83$, найти его можно по специальным таблицам, приведённым на нашем сайте. Теперь подставим все известные значения:
$S = \frac{2.22 \cdot 2.64 \cdot 0.83}{2} = 2.43$ кв. см.
Вычисленный ответ совпадает с ответом онлайн-калькулятора, а значит, решение — верное.
И наконец, рассмотрим случай когда нет данных о том, какие стороны являются основаниями, а какая сторона расположена под прямым углом, но при этом известны все стороны трапеции.
Площадь трапеции по четырём сторонам
Формула нахождения площади трапеции по четырём сторонам выглядит следующим образом:
$S = \frac{a + b}{2} \cdot \sqrt{c^2 - (\frac{(b - a)^2 + c^2 - d^2}{2 \cdot (b - a)})^2}$, где
$S$ - площадь трапеции,
$a$ - малое основание,
$b$ - большее основание,
$c, d$ - боковые стороны.