Тождественность в математике — очень часто используемое понятие. Различают понятия тождественных равенств, тождественных выражений и тождественных преобразований, давайте более подробно разберём, что значит каждое из этих понятий.
Тождественные выражения в математике
Рассмотрим три простых алгебраических выражения:
- $5x + 10$;
- $(x + 2) \cdot 5$
- $\frac{20x + 40}{4}$
Вне зависимости от используемых значений $x$, все три выражения между собой равны.
Для того чтобы доказать это, используем элементарные преобразования, разрешаемые в математике, и получим, что $5x + 10 = 5x + 10 = 5x + 10$, то есть все три выражения равны между собой. При упрощении становится очевидно, что вне зависимости от выбранного $x$ эти выражения всегда будут равны.
Мы подходим непосредственно к определению тождественных выражений:
Выражения называются тождественными друг с другом, если при любых значениях переменных они всегда равны между собой.
Например, можно сказать, что выражение $5x + 10$ тождественно выражениям $(x + 2) \cdot 5$ и $\frac{20x + 40}{4}$.
Стоит также обратить внимание на то, что не всегда выражения тождественны для всех возможных значений переменных, например, выражения $\frac{y^2-4}{y-2}$ и $y+2$ тождественны для любых $y$, кроме $y=2$.
При значении игрека, равному двум, первое из этих двух выражений теряет смысл, так как на нуль делить нельзя, а в знаменателе при этом значении получается нуль.
Данные выражения можно назвать тождественными при всех допустимых значениях переменной $y$, то есть эти выражения тождественны при всех $y$, при которых оба выражения не потеряют свой смысл. Такие выражения называются тождественными на заданном множестве значений.
Понятия «тождество» и «тождественное равенство»
Что же такое тождество в алгебре?
Тождество в математике — это равенство, которое всегда выполняется или, иными словами, является справедливым для всех множеств значений его переменных.
Если два и более тождественных выражения записать непосредственно рядом друг с другом через знак «равно» — то получится тождественное равенство, то есть тождество.
К тожественным равенствам относятся переместительный закон сложения $a+b =b + a$ и сочетательный закон умножения $(ab) \cdot c = a \cdot (bc)$, так как они являются верными вне зависимости от значения переменных $a, b, c$. Формулы для сокращённой записи разности квадратов, квадратов разности и квадратов суммы являются другими примерами тождественных равенств.
Иногда тождествами называются не только выражения, содержащие какие-либо переменные, но и все арифметически верные равенства типа $2+2=4$.
Не любое равенство, содержащее переменные, можно назвать тождеством. Например, равенство $y+5 = 7$ соблюдается только при $y= 2$, при каком-либо другом значении $y$ оно не соблюдается и поэтому тождеством его назвать нельзя.
Знак тождества в математике
Чаще всего тождества записывают через знак «равно» — «$=$», знак «тождественно» — «≡» иногда используют для особого выделения в речи тождественности какого-либо равенства. Обычно знак тождества используется значительно реже, чем знак равенства.
Тождественные преобразования
Очень часто для того чтобы упростить процесс вычисления каких-либо выражений, а также для их сравнения и более удобной подстановки переменных в равенства используют различные математические преобразования. Эти преобразования называются тождественными преобразованиями, так как они не изменяют конечные значения выражений и равенств.
Тождественные преобразования — это преобразования и замены одного выражения другим, тождественным ему, не изменяющие конечное значение выражений и не приводящие к нарушению тождественности равенств.
Любое выражение при любых допустимых значениях переменных, используемых в нём, принимает какое-либо значение. Из этого можно сделать вывод, что применение различных законов, соблюдающихся для арифметических действий приводит к преобразованию исходного выражение в новое, тождественное первоначальному выражению.
Какие выражения тождественны?
- $(10 + 3)$ и $13 \cdot (1 +5)$.
- $(x^2 + y^2)$ и $(x – y)(x+y)$.
- $8$ и $(2 \cdot 3 + 16 – 14)$.
- $7 + 4$ и $6 + 6$.
Ответ:
Тождественными являются выражения под номером 2 и 3, в случае выражений под номером 2 слева дана сокращённая формула разности квадратов, а справа — развёрнутая. В случае третьего выражения нужно упростить выражение справа:
$(2 \cdot 3 + 16 – 14)= 6 + 16 – 14 = 8$
$8=8$.