Справочник от Автор24
Поделись лекцией за скидку на Автор24

Уравнения движения деталей взрывателей

  • 👀 377 просмотров
  • 📌 302 загрузки
Выбери формат для чтения
Статья: Уравнения движения деталей взрывателей
Найди решение своей задачи среди 1 000 000 ответов
Загружаем конспект в формате pdf
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
Конспект лекции по дисциплине «Уравнения движения деталей взрывателей» pdf
Лекция 5 2.3 Методика расчёта элементов движения 2.3.1 Вывод уравнения движения детали взрывателя Уравнения движения деталей взрывателей рекомендуется составлять в следующем порядке: 1) составить кинематическую схему механизма; 2) изобразить на ней силы и моменты, приложенные к деталям механизма, в том числе реакции связей; 3) выразить указанные силы и моменты в функции времени t, перемещения x или скорости детали V, используя для этого чертежи механизма, баллистические таблицы (графики) и другие данные для расчѐта; 4) составить уравнение движения детали механизма; 5) исключить из уравнения неизвестные реакции связей; 6) выявить второстепенные члены уравнения, отбросив их, если они не превышают 5% (иногда 10%) главных членов; 7) найти момент начала движения t0, приравняв нулю перемещение и скорость детали (при решении задачи по участкам перемещение и скорость определяются как результат движения на предыдущем участке); 8) упростить уравнение выбором наивыгоднейшего начала отсчѐта времени движения; 9) привести уравнения к форме, удобной для последующего интегрирования. Используя данные здесь рекомендации, составим уравнения движения деталей некоторых механизмов. Пример 5. Составить уравнение движения ударника накольного механизма (рис.2.2, а) при выстреле. Во время выстрела на ударник действуют следующие силы (рис.2.3, б):   осевая сила инерции S, сила сопротивления R F1 пружины R, центробежная сила C, сила N1 реакции стенки гнезда N1 равная по величине силе направленная, C и и сила противоположно трения F1 S от центробежной силы инерции. Касательной силой инерции и силой трения от неѐ C X a) б) Рисунок 2.2 – Расчѐтная схема накольного механизма. пренебрегаем ввиду их малости, и также 1 считаем пружину невесомой. Проектируя рассмотренные силы на направление движения ударника (ось X), получим следующее уравнение движение: d 2x  S  R  F1. dt 2 Силу сопротивления пружины найдѐм как: (2.33) m R  R0  cx, где R0 – начальное сопротивление пружины; (2.34) c – коэффициент жесткости пружины; x – перемещение ударника. F1  fc, Сила трения: где f – коэффициент трения скольжения, обычно принимаемый равным 0,2. Сила инерции S и C согласно (1.1) и (1.4) равны: S 0,8D 2 P(t ) p;  G (2.35) 2  2  V 2 (t )  C    p.  D  g Подставляя значения всех сил в уравнение (2.33), получим уравнение движения: (2.36) 2  2  V 2 (t ) d 2 x 0,8D 2 P(t )  m 2  p  R0  cx  f  p, dt  G  D  g которое после некоторых преобразований приводится к виду (2.1): d 2x  k 2 x  f1 (t ), 2 dt где C k ; m (2.37) 2  2  2 0,8D 2 P(t ) R  V (t )  0 . f1 (t )  g  f   G m  D  Пример 6. Составить уравнение движения ударника центробежного накольного механизма (рис.2.3, а) при выстреле. Во время выстрела на ударник действуют: центробежная сила инерции C (рис.2.3, б), осевая сила инерции S, реакция нижней стенки гнезда N2, а также сила трения F2 вдоль этой стенки. Кроме того, при движении ударника на него действуют кориолисова сила инерции K, реакция боковой стенки гнезда N3 и сила трения F3 вдоль этой стенки. 2 N2  C F2  X S N3 V 0 F3 K б) a) Рисунок 2.3 – Расчѐтная схема центробежного накольного механизма. Проектируя рассмотренные силы на ось X , получим следующее уравнение движения ударника: d 2x m 2  C  F2  F3 . dt (2.38) Здесь 2  2  2 dx dx  2   V (t )m; K  2m  (t )  2m  V (t ). F2  fS ; F3  fK ; C  (  0  x) dt dt  D   D  Подставляя значения сил в уравнение (2.38), получим:  0,8D 2 P(t )   2  2 d 2x dx  2   V (t )  f  V (t ), m 2  m(  0  x) p  2m  dt dt  D   D    G  2 или d 2x dx 0,8D 2 P(t ) 2 2  2 f  ( t )   ( t ) x    ( t )  f g. (2.39) dt 2 dt  G Уравнение (2.39) представляет собой неоднородное линейное уравнение с переменными коэффициентами. Чтобы привести его к виду, удобному для дальнейшего интегрирования, воспользуемся способом усреднения переменных коэффициентов. С этой целью заменим в левой части уравнения переменную величину  (t ) средним значением угловой скорости снаряда за время движения ударника. Тогда уравнение движения принимает вид (2.1): d 2x dx  2u  k 2 x  f 2 (t ), 2 dt dt (2.40) или 2 u  fср  f Vср ; D 2 k  ср ;  2  2 0,8D 2 P(t )  V (t )  f 2 (t )  0  g.  G  D  3 Пример 7. Составить уравнение движения центробежной поворотной втулки предохранительно-детонирующего механизма (рис.2.4, а). 2 T 2 0 0 xc  с  0  y x c c C x c C y y б) a) Рисунок 2.4 – Расчѐтная схема предохранительно-детонирующего механизма с центробежной поворотной втулкой. Центробежные поворотные втулки обычно используются в предохранительных устройствах взрывателей для изоляции капсюля-детонатора от передаточного заряда. В канале орудия и на начальном участке траектории снаряда поворотная втулка удерживается специальными предохранителями, поэтому расчѐт втулки сводится к проверке еѐ взводимости и определению времени взведения еѐ на полѐте снаряда. Во время полѐта снаряда на поворотную втулку действуют следующие моменты: момент центробежной силы M C , вызванный смещением центра масс втулки относительно оси еѐ вращения и оси вращения снаряда; момент трения – M 0 на оси втулки от центробежной силы инерции; момент трения M H верхнего торца втулки о корпус механизма под действием силы набегания. Таким образом, уравнение движения втулки будет: d 2  MC  M0  M H , dt 2 где J – осевой момент инерции втулки. J (2.41) Найдѐм значения моментов M C , M 0 , M H . Можно считать, что центробежная сила инерции C приложена к центру масс втулки и направлена как показано на рис.2.4, б. Очевидно, C  mC 2  m 2 l 2   2  2l cos  , (2.42) где m – масса втулки; 4  C и  – расстояния от центра масс втулки соответственно до оси взрывателя и оси вращения втулки; l – расстояние между осью взрывателя и осью вращения втулки;  – угловая скорость полета снаряда, которая может быть принята за время поворота втулки постоянной и равной д;  – угол поворота втулки. Момент центробежной силы M C относительно оси вращения втулки равен: M C  mC 2l sin   ml 2 yC  ml 2  sin  , где  – угол между направлением центробежной силы С и осью X; (2.43) yC – ордината центра масс втулки. Момент трения на оси M 0 определяется по формуле: M 0  fCr0 cos   fm 2 r0 xC  fm 2 r0 (l   cos  ) , где r0 – радиус оси вращения втулки; (2.44) xC – абсцисса центра масс втулки. Момент трения от силы набегания M H равен: MH  2 fk 3 prT , 3 (2.45) где p – вес втулки; rT – радиус опорной площадки втулки; k3 – коэффициент набегания. Подставляя формулы (2.43) (2.41), получим: J d 2 2  ml 2  sin   fm 2 r0 (l   cos  )  f k3 p rT , 2 dt 3 или где d 2  f ( )  f 0 , dt 2 m 2 (l sin   f r0 cos  ) f ( )  ; J (2.46) 2 fm( 2 r0l  k3 grT ) 3 f0  ; J или при   д : mд2 f ( )  (l sin   fr0 cos  ); J 5 f ( )  mfд2  2 k   r0l   3 rT , J  3 k2  где k 2 – коэффициент центробежной взводимости. 2.3.2 Решение уравнений движения Решение дифференциального уравнения движения находят методом интегрирования его. Выбор того или иного метода интегрирования определяется требуемой точностью вычислений и используемыми вычислительными средствами. Пример 8. Найти величину энергии ударника центробежного накольного механизма (рис.2.3, а) при перемещении ударника на расстояние a2  9,1 мм . Движение ударника описывается уравнением вида (2.40): d 2x dx  2u  k 2 x  f 2 (t ), 2 dt dt (2.47) где u  298 c 1 ; k  1490 c 1. Правая часть уравнения (2.47) на участке времени движения ударника ( t0  0,0082 c ) представлена в табл. 9. Таблица 9 – Значение правой части уравнения (2.47). t,с 0,0082 0,0084 0,0086 0,0088 0,0090 0,0092 f (t ) , м/с2 700 1400 2050 2700 3350 t,с 0,0094 0,0096 0,0098 0,0100 0,0102 0,0104 f (t ) , м/с2 3950 4550 5130 5620 6100 6550 t,с 0,0106 0,0108 0,0110 0,0112 0,0114 0,0116 f (t ) , м/с2 7000 7470 7900 8300 8650 8920 Для интегрирования уравнения (2.47) заменим правую часть уравнения (табл.9) кусочно-линейной зависимостью вида: f (t )  f i 1  bi t , где f i 1 – значение функции в начале i-го интервала; (2.48) bi – коэффициент пропорциональности на i-ом интервале: bi  f i  f i 1 . t Здесь f i – значение функции в конце i-го интервала; t – шаг интегрирования, равный 0,0002 с (шаг табл. 9). Решение уравнения (2.47) будем искать по участкам на каждом шаге интегрирования t , принимая начальными условиями движения на каждом участке значения перемещения и скорости ударника в конце предыдущего шага интегрирования. 6 Решение уравнения (2.47) состоит из общего решения однородного уравнения (2.2) и частного решения уравнения (2.47) с правой частью вида (2.48). Общее решение однородного уравнения (2.5) будет: x1  eut ( Ash t  Bch t ), где A и B постоянные интегрирования; (2.49)   u 2  k 2  1520 c 1. Частное решение уравнения (2.47) с линейной правой частью согласно табл. 3 будем искать в виде: x1  a0  a1t. (2.50) Для определения коэффициентов a0 и a1 найдѐм производные x2 по времени: d 2 x2  0, dt 2 dx2  a1 ; dt затем подставим значения производных и x2 в уравнение (2.47) и приравняем коэффициенты при одинаковых степенях t : 0  2ua1  (a0  a1t )  fi 1  bit;  k 2 a1  bi ; 2ua1  k 2 a0  f i 1; отсюда 2ubi  f i 1k 2 bi (2.51) a    Ci . ; k2 k4 Складывая решения (2.49) и (2.50) с учѐтом (2.51), получим общее решение a1   уравнения (2.47): bi (2.52) t  Ci . k2 Постоянные интегрирования А и В найдѐм для следующих начальных условий x1  eut ( Ash  t  Bch  t )  движения x=x0, V=V0, при t=0. Тогда b 1  A  V0  i2  uB  .  k  Значение скорости ударника найдѐм, продифференцировав уравнение (2.52) по B  x0  Ci , времени: V  eut  B  uA  sh  t   A  uB   ch  t   bi . k2 Вычисления x, V и t проводим в конце каждого шага интегрирования, до тех пор, пока ударник не переместится на расстояние x  9,1 мм. Результаты вычислений представлены в таблице 10. По результатам расчѐта построен графики зависимостей x(t), V(t) (рисунок 2.5). 7 Таблица 10 t 0,0082 0,0084 0,0086 0,0088 0,0090 0,0092 0,0094 0,0096 0,0098 0,0100 0,0102 0,0104 0,0106 0,0108 0,0110 0,0112 0,0114 0,0116 f(t) b 700 1400 2050 2700 3350 3950 4550 5130 5620 6100 6550 7000 7470 7900 8300 8650 8920 0,00E+00 3,50E+06 3,50E+06 3,25E+06 3,25E+06 3,25E+06 3,00E+06 3,00E+06 2,90E+06 2,45E+06 2,40E+06 2,25E+06 2,25E+06 2,35E+06 2,15E+06 2,00E+06 1,75E+06 1,35E+06 Ci 0,000000 0,000423 0,000739 0,001024 0,001316 0,001609 0,001872 0,002142 0,002400 0,002607 0,002822 0,003020 0,003222 0,003437 0,003625 0,003800 0,003950 0,004059 B 0,000000 0,000423 0,000743 0,001059 0,001436 0,001892 0,002426 0,003111 0,003970 0,005015 0,006372 0,008097 0,010316 0,013168 0,016784 0,021398 0,027272 0,034747 x 0,00000 0,00000 0,00004 0,00012 0,00028 0,00055 0,00097 0,00157 0,00241 0,00355 0,00508 0,00709 0,00973 0,01316 0,01760 0,02332 0,03069 0,04014 A 0,00000 0,00112 0,00123 0,00135 0,00164 0,00203 0,00247 0,00314 0,00397 0,00493 0,00630 0,00802 0,01026 0,01315 0,01673 0,02133 0,02718 0,03460 V 0,00000 0,06796 0,26707 0,59454 1,05893 1,68404 2,49973 3,54876 4,89150 6,59767 8,76109 11,50911 15,00516 19,46218 25,14630 32,39271 41,62977 53,40091 k = 1490 u = 298 = 1520 t =0,0002 ch(t) = 1,046565 sh(t) = 0,308704 Рисунок 2.5 – Графики перемещения и скорости ударника. 8 Из графиков для x = 9,1 мм находим время накола капсюля жалом с момента выстрела (tн=10,56 мс) и скорость ударника в момент накола (Vн=14,3 м/с). Энергия ударника в момент накола может быть найдена по формуле Eн  mVн2 , 2 где m – масса ударника. Для массы ударника 1,57 г, энергия ударника в момент накола будет mVн2 1,57  103  14,32 Eн    0,16 Дж . 2 2 9
«Уравнения движения деталей взрывателей» 👇
Готовые курсовые работы и рефераты
Купить от 250 ₽
Решение задач от ИИ за 2 минуты
Решить задачу
Найди решение своей задачи среди 1 000 000 ответов
Найти

Тебе могут подойти лекции

Смотреть все 67 лекций
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot