Выбери формат для чтения
Загружаем конспект в формате pdf
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
1.3. Ɍɪɚɧɡɢɫɬɨɪɵ
1.3.1. Ʉɥɚɫɫɢɮɢɤɚɰɢɹ ɬɪɚɧɡɢɫɬɨɪɨɜ
Ɍɪɚɧɡɢɫɬɨɪ – ɷɬɨ ɷɥɟɤɬɪɨɩɪɟɨɛɪɚɡɨɜɚɬɟɥɶɧɵɣ ɩɪɢɛɨɪ, ɫɨɞɟɪɠɚɳɢɣ
ɞɜɚ ɢ ɛɨɥɟɟ p-n ɩɟɪɟɯɨɞɨɜ, ɢɦɟɸɳɢɣ ɬɪɢ ɢ ɛɨɥɟɟ ɜɵɜɨɞɨɜ ɢ ɩɪɟɞɧɚɡɧɚɱɟɧɧɵɣ ɞɥɹ ɭɫɢɥɟɧɢɹ ɦɨɳɧɨɫɬɢ.
Ɍɪɚɧɡɢɫɬɨɪɵ ɩɨ ɩɪɢɧɰɢɩɭ ɞɟɣɫɬɜɢɹ ɞɟɥɹɬɫɹ ɧɚ ɛɢɩɨɥɹɪɧɵɟ (ɭɩɪɚɜɥɹɟɦɵɟ ɬɨɤɨɦ), ɭɧɢɩɨɥɹɪɧɵɟ (ɭɩɪɚɜɥɹɟɦɵɟ ɷɥɟɤɬɪɢɱɟɫɤɢɦ ɩɨɥɟɦ ɢɥɢ
ɩɨɥɟɜɵɟ), IGBT-ɬɪɚɧɡɢɫɬɨɪɵ. Ⱥɛɛɪɟɜɢɚɬɭɪɚ IGBT – ɷɬɨ ɫɨɤɪɚɳɟɧɢɟ
ɧɚɡɜɚɧɢɹ Insulated gate bipolar transistor. ȼ ɩɟɪɟɜɨɞɟ ɷɬɨ ɡɧɚɱɢɬ ɛɢɩɨɥɹɪɧɵɣ ɬɪɚɧɡɢɫɬɨɪ ɫ ɢɡɨɥɢɪɨɜɚɧɧɵɦ ɡɚɬɜɨɪɨɦ (ȻɌɂɁ).
ȼ ɛɢɩɨɥɹɪɧɵɯ ɬɪɚɧɡɢɫɬɨɪɚɯ ɬɨɤ ɨɩɪɟɞɟɥɹɟɬɫɹ ɞɜɢɠɟɧɢɟɦ ɧɨɫɢɬɟɥɟɣ
ɨɛɨɢɯ ɡɧɚɤɨɜ: ɷɥɟɤɬɪɨɧɨɜ ɢ ɞɵɪɨɤ, ɩɨɷɬɨɦɭ ɨɧɢ ɧɚɡɵɜɚɸɬɫɹ ɛɢɩɨɥɹɪɧɵɦɢ. ȼ ɩɨɥɟɜɵɯ ɬɪɚɧɡɢɫɬɨɪɚɯ ɬɨɤ ɨɩɪɟɞɟɥɹɟɬɫɹ ɲɢɪɢɧɨɣ ɩɪɨɜɨɞɹɳɟɝɨ
ɤɚɧɚɥɚ, ɩɨ ɤɨɬɨɪɨɦɭ ɞɜɢɠɭɬɫɹ ɧɨɫɢɬɟɥɢ ɨɞɧɨɝɨ ɡɧɚɤɚ, ɨɬɫɸɞɚ ɢɯ ɞɪɭɝɨɟ
ɧɚɡɜɚɧɢɟ – ɭɧɢɩɨɥɹɪɧɵɟ. IGBT-ɬɪɚɧɡɢɫɬɨɪɵ ɹɜɥɹɸɬɫɹ ɝɢɛɪɢɞɧɵɦɢ, ɜ
ɧɢɯ ɫɨɱɟɬɚɸɬɫɹ ɩɨɥɨɠɢɬɟɥɶɧɵɟ ɫɜɨɣɫɬɜɚ ɛɢɩɨɥɹɪɧɵɯ ɢ ɩɨɥɟɜɵɯ ɬɪɚɧɡɢɫɬɨɪɨɜ.
1.3.2. Ȼɢɩɨɥɹɪɧɵɟ ɬɪɚɧɡɢɫɬɨɪɵ
Ȼɢɩɨɥɹɪɧɵɟ ɬɪɚɧɡɢɫɬɨɪɵ ɫɨɞɟɪɠɚɬ ɬɪɢ ɱɟɪɟɞɭɸɳɢɯɫɹ ɫɥɨɹ ɫ ɪɚɡɥɢɱɧɵɦ ɬɢɩɨɦ ɩɪɨɜɨɞɢɦɨɫɬɢ. ȼ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɩɨɪɹɞɤɚ ɢɯ ɱɟɪɟɞɨɜɚɧɢɹ ɛɢɩɨɥɹɪɧɵɟ ɬɪɚɧɡɢɫɬɨɪɵ ɞɟɥɹɬɫɹ ɧɚ ɬɪɚɧɡɢɫɬɨɪɵ ɬɢɩɚ n-p-n ɢ ɬɢɩɚ
p-n-p. ɂɯ ɭɫɥɨɜɧɵɟ ɨɛɨɡɧɚɱɟɧɢɹ ɩɪɢɜɟɞɟɧɵ ɧɚ ɪɢɫ. 1.10.
ɚ)
ɛ)
ɉɪɢɧɰɢɩ ɞɟɣɫɬɜɢɹ ɛɢɩɨɥɹɪɧɨɝɨ ɬɪɚɧɡɢɫɬɨɪɚ ɪɚɫɫɦɨɬɪɢɦ ɧɚ ɩɪɢɦɟɪɟ ɬɪɚɧɡɢɫɬɨɪɚ ɬɢɩɚ n-p-n (ɪɢɫ.
1.10). ɋɪɟɞɧɢɣ ɫɥɨɣ ɫɬɪɭɤɬɭɪɵ ɧɚɡɵɜɚɟɬɫɹ ɛɚɡɨɣ.
Ʉɪɚɣɧɢɣ ɫɥɨɣ, ɹɜɥɹɸɳɢɣɫɹ ɢɫɬɨɱɧɢɤɨɦ ɧɨɫɢɬɟɥɟɣ
ɡɚɪɹɞɚ, ɧɚɡɵɜɚɟɬɫɹ ɷɦɢɬɬɟɪɨɦ. Ⱦɪɭɝɨɣ ɤɪɚɣɧɢɣ
ɫɥɨɣ, ɩɪɢɧɢɦɚɸɳɢɣ ɡɚɪɹɞɵ, ɧɚɡɵɜɚɟɬɫɹ ɤɨɥɥɟɤɊɢɫ. 1.10. ɍɫɥɨɜɬɨɪɨɦ. ɉɪɢɥɨɠɟɧɧɵɦɢ ɧɚɩɪɹɠɟɧɢɹɦɢ ɩɟɪɟɯɨɞ
ɧɵɟ ɨɛɨɡɧɚɱɟɧɢɹ
ɷɦɢɬɬɟɪ-ɛɚɡɚ ɫɦɟɳɟɧ ɜ ɩɪɹɦɨɦ ɧɚɩɪɚɜɥɟɧɢɢ, ɚ ɩɟɬɪɚɧɡɢɫɬɨɪɨɜ:
ɪɟɯɨɞ ɤɨɥɥɟɤɬɨɪ-ɛɚɡɚ ɜ ɨɛɪɚɬɧɨɦ. Ʉ ɩɪɹɦɨ ɫɦɟɚ) ɬɢɩɚ n-p-n;
ɳɟɧɧɨɦɭ ɩɟɪɟɯɨɞɭ ɞɨɫɬɚɬɨɱɧɨ ɩɪɢɥɨɠɢɬɶ ɧɟɛ) ɬɢɩɚ p-n-p
ɛɨɥɶɲɨɟ ɧɚɩɪɹɠɟɧɢɟ, ɱɬɨɛɵ ɩɨɲɟɥ ɛɨɥɶɲɨɣ ɬɨɤ.
Ʉ ɨɛɪɚɬɧɨ ɫɦɟɳɟɧɧɨɦɭ ɩɟɪɟɯɨɞɭ ɦɨɠɟɬ ɩɪɢɤɥɚɞɵɜɚɬɶɫɹ ɡɧɚɱɢɬɟɥɶɧɨɟ ɧɚɩɪɹɠɟɧɢɟ. ȿɫɥɢ ɪɚɡɨɪɜɚɬɶ ɰɟɩɶ ɷɦɢɬɬɟɪɚ, ɬɨ
ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɷɬɨɝɨ ɧɚɩɪɹɠɟɧɢɹ ɱɟɪɟɡ ɤɨɥɥɟɤɬɨɪ ɛɭɞɟɬ ɩɪɨɬɟɤɚɬɶ ɦɚ19
ɥɟɧɶɤɢɣ ɬɨɤ ɨɛɪɚɬɧɨ ɫɦɟɳɟɧɧɨɝɨ ɩɟɪɟɯɨɞɚ I Ʉ 0 . ɉɪɢ ɡɚɦɵɤɚɧɢɢ ɰɟɩɢ
ɷɦɢɬɬɟɪɚ ɩɨɞ ɞɟɣɫɬɜɢɟɦ ɩɪɢɥɨɠɟɧɧɨɝɨ ɩɪɹɦɨɝɨ ɧɚɩɪɹɠɟɧɢɹ ɨɫɧɨɜɧɵɟ ɧɨɫɢɬɟɥɢ (ɷɥɟɤɬɪɨɧɵ) ɢɧɠɟɤɬɢɪɭɸɬɫɹ
ɢɡ ɷɦɢɬɬɟɪɚ ɱɟɪɟɡ ɷɦɢɬɬɟɪɧɨ-ɛɚɡɨɜɵɣ
ɩɟɪɟɯɨɞ ɉ1 ɜ ɛɚɡɭ, ɝɞɟ ɨɧɢ ɫɬɚɧɨɜɹɬɫɹ
ɧɟɨɫɧɨɜɧɵɦɢ. Ⱦɚɥɟɟ ɧɨɫɢɬɟɥɢ ɞɢɮɊɢɫ. 1.11. ɉɨɹɫɧɟɧɢɟ ɩɪɢɧɰɢɩɚ
ɮɭɧɞɢɪɭɸɬ ɱɟɪɟɡ ɛɚɡɭ ɤ ɤɨɥɥɟɤɬɨɪɧɨɞɟɣɫɬɜɢɹ ɬɪɚɧɡɢɫɬɨɪɚ ɬɢɩɚ n-p-n
ɛɚɡɨɜɨɦɭ ɩɟɪɟɯɨɞɭ ɉ2 ɢ ɩɨɩɚɞɚɸɬ ɜ
ɨɛɥɚɫɬɶ ɞɟɣɫɬɜɢɹ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ
ɨɛɪɚɬɧɨ ɫɦɟɳɟɧɧɨɝɨ ɩɟɪɟɯɨɞɚ. ɉɨɞ
ɞɟɣɫɬɜɢɟɦ ɷɬɨɝɨ ɩɨɥɹ ɧɨɫɢɬɟɥɢ ɞɪɟɣɮɭɸɬ ɤ ɤɨɥɥɟɤɬɨɪɭ. ɇɚ ɷɬɨɦ ɫɥɨɠɧɨɦ ɩɭɬɢ ɱɚɫɬɶ ɧɨɫɢɬɟɥɟɣ ɬɟɪɹɟɬɫɹ – ɜ ɛɚɡɟ ɨɧɢ ɪɟɤɨɦɛɢɧɢɪɭɸɬ ɫ ɧɨɫɢɬɟɥɹɦɢ ɩɪɨɬɢɜɨɩɨɥɨɠɧɨɝɨ ɡɧɚɤɚ, ɩɨɷɬɨɦɭ ɬɨɤ ɤɨɥɥɟɤɬɨɪɚ I Ʉ ɦɟɧɶɲɟ
ɬɨɤɚ ɷɦɢɬɬɟɪɚ I ɗ . Ɋɚɡɧɨɫɬɶ ɷɬɢɯ ɬɨɤɨɜ – ɷɬɨ ɬɨɤ ɛɚɡɵ I Ȼ . ɍɫɢɥɢɬɟɥɶɧɵɟ
ɫɜɨɣɫɬɜɚ ɬɪɚɧɡɢɫɬɨɪɨɜ ɯɚɪɚɤɬɟɪɢɡɭɸɬ ɤɨɷɮɮɢɰɢɟɧɬɨɦ ɩɟɪɟɞɚɱɢ ɬɨɤɚ
α , ɤɨɬɨɪɵɣ ɫɜɹɡɵɜɚɟɬ ɩɪɢɪɚɳɟɧɢɹ ɬɨɤɨɜ:
∆I
α= Ʉ .
(1.2)
∆I ɗ
Ɍɨɝɞɚ ɬɨɤ ɤɨɥɥɟɤɬɨɪɚ
I Ʉ =α ⋅I ɗ + I Ʉ 0 .
(1.3)
ɂɡ ɨɩɢɫɚɧɢɹ ɩɪɢɧɰɢɩɚ ɞɟɣɫɬɜɢɹ ɫɥɟɞɭɟɬ, ɱɬɨ ɤɨɷɮɮɢɰɢɟɧɬ ɩɟɪɟɞɚɱɢ
ɬɨɤɚ ɦɟɧɶɲɟ ɟɞɢɧɢɰɵ. ɍ ɫɨɜɪɟɦɟɧɧɵɯ ɬɪɚɧɡɢɫɬɨɪɨɜ α =0,90,99 . Ɇɨɠɟɬ ɫɨɡɞɚɬɶɫɹ ɜɩɟɱɚɬɥɟɧɢɟ, ɱɬɨ ɬɪɚɧɡɢɫɬɨɪ ɧɟ ɭɫɢɥɢɜɚɟɬ. ɇɨ ɡɞɟɫɶ ɛɵɥɨ
ɬɨɥɶɤɨ ɩɨɤɚɡɚɧɨ, ɱɬɨ ɬɪɚɧɡɢɫɬɨɪ ɧɟ ɭɫɢɥɢɜɚɟɬ ɬɨɤ ɜ ɞɚɧɧɨɣ ɫɯɟɦɟ. Ɉɤɚɡɵɜɚɟɬɫɹ, ɱɬɨ ɭɫɢɥɢɬɟɥɶɧɵɟ ɫɜɨɣɫɬɜɚ ɡɚɜɢɫɹɬ ɨɬ ɫɯɟɦɵ ɜɤɥɸɱɟɧɢɹ
ɬɪɚɧɡɢɫɬɨɪɚ.
ȼ ɫɯɟɦɟ ɪɢɫ. 1.10 ɭ ɷɦɢɬɬɟɪɧɨɣ (ɜɯɨɞɧɨɣ) ɢ ɤɨɥɥɟɤɬɨɪɧɨɣ (ɜɵɯɨɞɧɨɣ) ɰɟɩɢ ɢɦɟɟɬɫɹ ɨɛɳɚɹ ɬɨɱɤɚ – ɛɚɡɚ. ɉɨɷɬɨɦɭ ɷɬɚ ɫɯɟɦɚ ɧɚɡɵɜɚɟɬɫɹ
ɫɯɟɦɨɣ ɫ ɨɛɳɟɣ ɛɚɡɨɣ. ɋɭɳɟɫɬɜɭɸɬ ɬɚɤɠɟ ɫɯɟɦɵ ɫ ɨɛɳɢɦ ɤɨɥɥɟɤɬɨɪɨɦ ɢ ɫ ɨɛɳɢɦ ɷɦɢɬɬɟɪɨɦ (ɪɢɫ. 1.11). ɉɨɫɥɟɞɧɹɹ ɫɯɟɦɚ ɢɦɟɟɬ ɧɚɢɥɭɱɲɢɟ ɭɫɢɥɢɬɟɥɶɧɵɟ ɫɜɨɣɫɬɜɚ ɢ ɩɨɷɬɨɦɭ ɱɚɳɟ ɜɫɟɝɨ ɩɪɢɦɟɧɹɟɬɫɹ.
Ʉɨɷɮɮɢɰɢɟɧɬ ɩɟɪɟɞɚɱɢ ɬɨɤɚ ɜ ɫɯɟɦɟ ɫ ɨɛɳɢɦ ɷɦɢɬɬɟɪɨɦ
∆I
β= Ʉ .
(1.4)
∆I Ȼ
20
ɚ)
ɛ)
ɜ)
Ɋɢɫ. 1.12. ɋɯɟɦɵ ɜɤɥɸɱɟɧɢɹ ɬɪɚɧɡɢɫɬɨɪɚ:ɚ) ɫ ɨɛɳɟɣ ɛɚɡɨɣ (ɈȻ);
ɛ) ɫ ɨɛɳɢɦ ɷɦɢɬɬɟɪɨɦ (Ɉɗ);ɜ) ɫ ɨɛɳɢɦ ɤɨɥɥɟɤɬɨɪɨɦ (ɈɄ)
ɗɬɨɬ ɤɨɷɮɮɢɰɢɟɧɬ, ɤɚɤ ɫɥɟɞɭɟɬ ɢɡ ɮɨɪɦɭɥɵ, ɫɨɫɬɚɜɥɹɟɬ 10...100. ɋɨɩɪɨɬɢɜɥɟɧɢɟ ɧɚɝɪɭɡɤɢ ɜ ɜɵɯɨɞɧɨɣ ɰɟɩɢ ɦɨɠɟɬ ɛɵɬɶ ɛɨɥɶɲɢɦ, ɬɚɤ ɤɚɤ ɜ
ɷɬɨɣ ɰɟɩɢ ɞɟɣɫɬɜɭɟɬ ɛɨɥɶɲɨɟ ɧɚɩɪɹɠɟɧɢɟ, ɚ ɜɨ ɜɯɨɞɧɨɣ ɰɟɩɢ ɧɚɩɪɹɠɟɧɢɟ ɦɚɥɨ. ɉɨɷɬɨɦɭ ɫɯɟɦɚ ɫ ɨɛɳɢɦ ɷɦɢɬɬɟɪɨɦ ɨɛɟɫɩɟɱɢɜɚɟɬ ɬɚɤɠɟ ɭɫɢɥɟɧɢɟ ɧɚɩɪɹɠɟɧɢɹ ɢ, ɫɥɟɞɨɜɚɬɟɥɶɧɨ, ɛɨɥɶɲɨɣ ɤɨɷɮɮɢɰɢɟɧɬ ɭɫɢɥɟɧɢɹ
ɦɨɳɧɨɫɬɢ.
Ɉɫɧɨɜɧɵɟ ɧɟɞɨɫɬɚɬɤɢ ɫɯɟɦɵ ɫ ɨɛɳɢɦ ɷɦɢɬɬɟɪɨɦ: ɧɢɡɤɚɹ ɬɟɪɦɨɫɬɚɛɢɥɶɧɨɫɬɶ ɢ ɧɟɛɨɥɶɲɨɟ ɜɯɨɞɧɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ. ɗɬɢ ɧɟɞɨɫɬɚɬɤɢ ɩɪɟɨɞɨɥɟɜɚɸɬɫɹ ɜ ɫɯɟɦɟ ɫ ɨɛɳɢɦ ɤɨɥɥɟɤɬɨɪɨɦ, ɧɨ ɨɧɚ ɧɟ ɭɫɢɥɢɜɚɟɬ ɧɚɩɪɹɠɟɧɢɟ ɢ ɢɦɟɟɬ ɦɟɧɶɲɢɣ ɤɨɷɮɮɢɰɢɟɧɬ ɭɫɢɥɟɧɢɹ ɦɨɳɧɨɫɬɢ.
Ʉɨɷɮɮɢɰɢɟɧɬɵ ɩɟɪɟɞɚɱɢ ɬɨɤɨɜ ɬɪɚɧɡɢɫɬɨɪɨɜ α ɢ β ɡɚɜɢɫɹɬ ɨɬ ɱɚɫɬɨɬɵ. ɂɡ-ɡɚ ɢɧɟɪɰɢɨɧɧɨɫɬɢ ɩɪɨɰɟɫɫɨɜ, ɩɪɨɢɫɯɨɞɹɳɢɯ ɜ ɬɪɚɧɡɢɫɬɨɪɟ ɩɪɢ
ɞɜɢɠɟɧɢɢ ɡɚɪɹɞɨɜ, ɩɪɢɪɚɳɟɧɢɹ ɜɵɯɨɞɧɨɝɨ ɬɨɤɚ ɡɚɩɚɡɞɵɜɚɸɬ ɩɨ ɮɚɡɟ
ɩɨ ɨɬɧɨɲɟɧɢɸ ɤ ɩɪɢɪɚɳɟɧɢɸ ɜɯɨɞɧɨɝɨ. ɉɪɢ ɷɬɨɦ ɭɦɟɧɶɲɚɟɬɫɹ ɢ ɚɦɩɥɢɬɭɞɚ. ȼɜɨɞɢɬɫɹ ɩɨɧɹɬɢɹ ɩɪɟɞɟɥɶɧɨɣ ɱɚɫɬɨɬɵ ɭɫɢɥɟɧɢɹ ɜ ɫɯɟɦɟ ɫ ɨɛɳɟɣ ɛɚɡɨɣ f α ɢ ɜ ɫɯɟɦɟ ɫ ɨɛɳɢɦ ɷɦɢɬɬɟɪɨɦ f β , ɩɪɢ ɤɨɬɨɪɨɣ ɤɨɷɮɮɢɰɢɟɧɬɵ α ɢ β ɭɦɟɧɶɲɚɸɬɫɹ ɜ 2 ɪɚɡ.
f β = f α (1 – α ),
(1.5)
ɫɥɟɞɨɜɚɬɟɥɶɧɨ, ɱɚɫɬɨɬɧɵɟ ɫɜɨɣɫɬɜɚ ɫɯɟɦɵ ɫ ɨɛɳɢɦ ɷɦɢɬɬɟɪɨɦ ɫɭɳɟɫɬɜɟɧɧɨ ɯɭɠɟ, ɱɟɦ ɫɯɟɦɵ ɫ ɨɛɳɟɣ ɛɚɡɨɣ
ɉɪɢ ɪɚɫɱɟɬɟ ɫɯɟɦ ɧɚ ɬɪɚɧɡɢɫɬɨɪɚɯ ɢɫɩɨɥɶɡɭɸɬɫɹ ɢɯ ɫɬɚɬɢɱɟɫɤɢɟ
ȼȺɏ. Ɉɫɧɨɜɧɵɟ ȼȺɏ – ɜɵɯɨɞɧɚɹ ɢ ɜɯɨɞɧɚɹ.
ɇɚ ɪɢɫ. 1.13 ɩɪɢɜɟɞɟɧɨ ɫɟɦɟɣɫɬɜɨ ɜɵɯɨɞɧɵɯ ɫɬɚɬɢɱɟɫɤɢɯ ɯɚɪɚɤɬɟɪɢɫɬɢɤ ɞɥɹ ɫɯɟɦɵ ɫ ɨɛɳɟɣ ɛɚɡɨɣ I Ʉ = f (U Ʉ )I = const . ɏɚɪɚɤɬɟɪɢɫɬɢɤɚ
ɗ
ɩɪɢ Iɷ = 0 ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɨɛɪɚɬɧɨɣ ɜɟɬɜɢ ȼȺɏ p-n ɩɟɪɟɯɨɞɚ. ɉɪɢ ɭɜɟɥɢɱɟɧɢɢ ɬɨɤɚ Iɷ ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ ɩɨɱɬɢ ɧɚ ɬɚɤɭɸ ɠɟ ɜɟɥɢɱɢɧɭ ɭɜɟɥɢɱɢɜɚɟɬɫɹ ɬɨɤ Iɤ, ɬɚɤ ɤɚɤ ɤɨɷɮɮɢɰɢɟɧɬ α ɛɥɢɡɨɤ ɤ 1. ɉɨɷɬɨɦɭ ɤɪɢɜɵɟ ɢɞɭɬ ɩɚɪɚɥɥɟɥɶɧɨ ɢ ɩɨɱɬɢ ɝɨɪɢɡɨɧɬɚɥɶɧɨ.
21
ɇɚ ɪɢɫ. 1.14 ɩɪɢɜɟɞɟɧɵ ɫɟɦɟɣɫɬɜɚ
ȼȺɏ ɞɥɹ ɫɯɟɦɵ ɫ ɨɛɳɢɦ ɷɦɢɬɬɟɪɨɦ:
ɜɵɯɨɞɧɚɹ I Ʉ = f (U Ʉ )I Ȼ = const ɢ ɜɯɨɞɧɚɹ
I Ȼ = f (U Ȼ )I Ʉ = const . Ʉɪɨɦɟ ɧɢɯ ɱɚɫɬɨ ɢɫ-
ɩɨɥɶɡɭɸɬ ɯɚɪɚɤɬɟɪɢɫɬɢɤɭ ɩɪɹɦɨɣ ɩɟɪɟɞɚɱɢ ɩɨ ɬɨɤɭ I Ʉ = f (I Ȼ )U Ʉ = ɫonst .
Ɋɢɫ.1.13. ȼɵɯɨɞɧɵɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɬɪɚɧɡɢɫɬɨɪɚ, ɜɤɥɸɱɟɧɧɨɝɨ
ɩɨ ɫɯɟɦɟ ɫ ɈȻ
Ɉɫɧɨɜɧɵɟ ɩɚɪɚɦɟɬɪɵ ɛɢɩɨɥɹɪɧɵɯ
ɬɪɚɧɡɢɫɬɨɪɨɜ:
I
– ɦɚɤɫɢɦɚɥɶɧɵɣ ɬɨɤ ɤɨɥɥɟɤɬɨɄ .ɆȺɏ
ɪɚ (ɞɨɫɬɢɝɚɟɬ ɫɨɬɧɢ ɚɦɩɟɪ).
ɛ)
ɚ)
Ɋɢɫ. 1.14. ȼɵɯɨɞɧɵɟ (ɚ) ɢ ɜɯɨɞɧɵɟ (ɛ)ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɬɪɚɧɡɢɫɬɨɪɚ ɜ
ɫɯɟɦɟ Ɉɗ
U Ʉ .ɆȺɏ – ɦɚɤɫɢɦɚɥɶɧɨɟ ɧɚɩɪɹɠɟɧɢɟ ɧɚ ɤɨɥɥɟɤɬɨɪɟ (ɞɨ 1000ȼ).
I
ɢ U Ʉ .ɆȺɏ ɧɟ ɦɨɝɭɬ ɞɨɫɬɢɝɚɬɶ ɨɞɧɨɜɪɟɦɟɧɧɨ ɦɚɤɫɢɦɚɥɶɧɵɯ
Ʉ .ɆȺɏ
ɡɧɚɱɟɧɢɣ.
PɄ .ɆȺɏ – ɦɚɤɫɢɦɚɥɶɧɚɹ ɦɨɳɧɨɫɬɶ, ɤɨɬɨɪɭɸ ɦɨɠɧɨ ɪɚɫɫɟɹɬɶ ɧɚ ɤɨɥɥɟɤɬɨɪɟ.
β – ɤɨɷɮɮɢɰɢɟɧɬ ɩɟɪɟɞɚɱɢ (ɭɫɢɥɟɧɢɹ) ɜ ɫɯɟɦɟ ɫ ɨɛɳɢɦ ɷɦɢɬɬɟɪɨɦ
ɩɨ ɬɨɤɭ (ɞɨ ɫɨɬɟɧ, ɭ ɜɵɫɨɤɨɜɨɥɶɬɧɵɯ ɷɬɨ ɟɞɢɧɢɰɵ).
I Ʉ 0 – ɬɨɤ ɨɛɪɚɬɧɨ ɫɦɟɳɟɧɧɨɝɨ ɤɨɥɥɟɤɬɨɪɧɨɝɨ ɩɟɪɟɯɨɞɚ (ɱɟɪɟɡ ɡɚɩɟɪɬɵɣ ɬɪɚɧɡɢɫɬɨɪ).
rɌ – ɬɟɩɥɨɜɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ.
rT = ∆T .
PɄ .ɆȺX
22
∆T – ɪɚɡɧɨɫɬɶ ɬɟɦɩɟɪɚɬɭɪ ɦɟɠɞɭ ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɨɣ ɢ ɤɪɢɫɬɚɥɥɨɦ.
ɇɚ ɪɢɫ. 1.14, ɚ ɧɚɧɟɫɟɧɚ ɪɚɡɪɟɲɟɧɧɚɹ ɨɛɥɚɫɬɶ ɪɚɛɨɬɵ ɬɪɚɧɡɢɫɬɨɪɚ,
ɨɝɪɚɧɢɱɟɧɧɚɹ ɞɨɩɭɫɬɢɦɵɦ ɧɚɩɪɹɠɟɧɢɟɦ, ɞɨɩɭɫɬɢɦɵɦ ɬɨɤɨɦ ɢ ɤɪɢɜɨɣ
ɞɨɩɭɫɬɢɦɨɣ ɦɨɳɧɨɫɬɢ.
1.3.3. Ʌɢɧɟɣɧɵɣ ɪɟɠɢɦ ɪɚɛɨɬɵ ɬɪɚɧɡɢɫɬɨɪɚ
ɍɫɢɥɢɬɟɥɶɧɵɣ ɤɚɫɤɚɞ – ɷɬɨ ɷɥɟɦɟɧɬɚɪɧɵɣ ɭɫɢɥɢɬɟɥɶ, ɜɵɩɨɥɧɟɧɧɵɣ ɧɚ ɬɪɚɧɡɢɫɬɨɪɟ, ɢɦɟɸɳɢɣ ɜɯɨɞ ɢ ɜɵɯɨɞ. Ɋɚɫɫɦɨɬɪɢɦ ɪɚɛɨɬɭ ɬɪɚɧɡɢɫɬɨɪɚ ɜ ɩɪɨɫɬɟɣɲɟɦ ɭɫɢɥɢɬɟɥɶɧɨɦ ɤɚɫɤɚɞɟ (ɪɢɫ. 1.15).
Ɋɢɫ. 1.15. ɍɫɢɥɢɬɟɥɶɧɵɣ ɤɚɫɤɚɞ
Ⱦɥɹ ɩɨɹɫɧɟɧɢɹ ɧɚ ɪɢɫ. 1.16 ɩɪɢɜɟɞɟɧɚ ɞɢɚɝɪɚɦɦɚ ɢɥɥɸɫɬɪɢɪɭɸɳɚɹ
ɩɪɨɰɟɫɫɵ. ȼ ɩɟɪɜɨɦ ɤɜɚɞɪɚɧɬɟ ɩɪɟɞɫɬɚɜɥɟɧɵ ɜɵɯɨɞɧɵɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ. Ɋɚɫɩɪɟɞɟɥɟɧɢɟ ɧɚɩɪɹɠɟɧɢɹ ɩɢɬɚɧɢɹ EɄ ɦɟɠɞɭ ɬɪɚɧɡɢɫɬɨɪɨɦ VT ɢ
ɫɨɩɪɨɬɢɜɥɟɧɢɟɦ ɧɚɝɪɭɡɤɢ RɄ ɦɨɠɧɨ ɧɚɣɬɢ ɝɪɚɮɢɱɟɫɤɢ ɢɡ ɭɪɚɜɧɟɧɢɹ,
ɡɚɩɢɫɚɧɧɨɝɨ ɩɨ ɜɬɨɪɨɦɭ ɡɚɤɨɧɭ Ʉɢɪɯɝɨɮɚ:
EɄ =U Ʉ + I Ʉ ⋅ RɄ ,
(1.6)
ɝɞɟ I Ʉ – ɬɨɤ ɤɨɥɥɟɤɬɨɪɚ,
U Ʉ – ɧɚɩɪɹɠɟɧɢɟ ɧɚ ɤɨɥɥɟɤɬɨɪɟ.
ɗɬɨ ɭɪɚɜɧɟɧɢɟ ɦɨɠɟɬ ɛɵɬɶ ɪɟɲɟɧɨ ɝɪɚɮɢɱɟɫɤɢ. Ⱦɥɹ ɷɬɨɝɨ ɧɚ ɪɢɫɭɧɤɟ ɩɨɫɬɪɨɟɧɚ ɥɢɧɢɹ ɧɚɝɪɭɡɤɢ. ɍɪɚɜɧɟɧɢɟ ɥɢɧɢɢ ɧɚɝɪɭɡɤɢ
U Ʉ = E Ʉ − I Ʉ ⋅ RɄ .
(1.7)
Ɍɨɱɤɢ ɩɟɪɟɫɟɱɟɧɢɹ ɜɵɯɨɞɧɵɯ ɯɚɪɚɤɬɟɪɢɫɬɢɤ ɢ ɥɢɧɢɢ ɧɚɝɪɭɡɤɢ ɩɨɡɜɨɥɹɸɬ ɨɩɪɟɞɟɥɢɬɶ ɬɨɤ ɤɨɥɥɟɤɬɨɪɚ ɢ ɧɚɩɪɹɠɟɧɢɟ ɧɚ ɤɨɥɥɟɤɬɨɪɟ ɩɪɢ
ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɯ ɬɨɤɚɯ ɛɚɡɵ.
23
Ɋɢɫ. 1.16. ɇɚɝɪɭɡɨɱɧɚɹ ɞɢɚɝɪɚɦɦɚ. 1 – ɯɚɪɚɤɬɟɪɢɫɬɢɤɚ ɩɪɹɦɨɣ ɩɟɪɟɞɚɱɢ ɩɨ ɬɨɤɭ ɬɪɚɧɡɢɫɬɨɪɚ; 2 – ɯɚɪɚɤɬɟɪɢɫɬɢɤɚ ɩɪɹɦɨɣ ɩɟɪɟɞɚɱɢ ɩɨ ɬɨɤɭ ɭɫɢɥɢɬɟɥɶɧɨɝɨ ɤɚɫɤɚɞɚ
24
25
ɉɨ ɬɨɱɤɚɦ ɩɟɪɟɫɟɱɟɧɢɹ ɜɵɯɨɞɧɵɯ ɯɚɪɚɤɬɟɪɢɫɬɢɤ ɢ ɥɢɧɢɢ ɧɚɝɪɭɡɤɢ
ɜɨ ɜɬɨɪɨɦ ɤɜɚɞɪɚɧɬɟ ɩɨɫɬɪɨɟɧɚ ɯɚɪɚɤɬɟɪɢɫɬɢɤɚ ɩɪɹɦɨɣ ɩɟɪɟɞɚɱɢ ɩɨ ɬɨɤɭ (ɏɉɉɌ) ɭɫɢɥɢɬɟɥɶɧɨɝɨ ɤɚɫɤɚɞɚ I Ʉ = f (I Ȼ ) ɩɪɢ ɞɚɧɧɵɯ EɄ ɢ RɄ .
ɋɨɫɬɨɹɧɢɟ ɬɪɚɧɡɢɫɬɨɪɚ ɩɪɢ ɨɬɫɭɬɫɬɜɢɢ ɜɯɨɞɧɨɝɨ ɫɢɝɧɚɥɚ ɧɚɡɵɜɚɟɬɫɹ
ɩɨɤɨɟɦ. Ɋɚɛɨɱɚɹ ɬɨɱɤɚ ɩɨɤɨɹ Ɋ ɜɵɛɢɪɚɟɬɫɹ ɧɚ ɫɟɪɟɞɢɧɟ ɨɬɪɟɡɤɚ MN,
ɨɬɫɟɤɚɟɦɨɝɨ ɭɱɚɫɬɤɚɦɢ ɜɵɯɨɞɧɵɯ ɯɚɪɚɤɬɟɪɢɫɬɢɤ, ɢɞɭɳɢɦɢ ɩɨɱɬɢ ɝɨɪɢɡɨɧɬɚɥɶɧɨ, ɢɥɢ ɧɚ ɫɟɪɟɞɢɧɟ ɥɢɧɟɣɧɨɝɨ ɭɱɚɫɬɤɚ ɏɉɉɌ ɭɫɢɥɢɬɟɥɶɧɨɝɨ
ɤɚɫɤɚɞɚ.
Ⱦɥɹ ɜɵɛɨɪɚ ɪɚɛɨɱɟɣ ɬɨɱɤɢ ɩɨɤɨɹ ɧɚ ɛɚɡɭ ɩɨɞɚɟɬɫɹ ɬɨɤ I ȻɊ ɱɟɪɟɡ ɪɟɡɢɫɬɨɪ R1. Ʉɨɧɞɟɧɫɚɬɨɪ C ɧɚ ɜɯɨɞɟ ɭɫɬɪɚɧɹɟɬ ɜɥɢɹɧɢɟ ɜɧɭɬɪɟɧɧɟɝɨ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɢɫɬɨɱɧɢɤɚ ɜɯɨɞɧɨɝɨ ɫɢɝɧɚɥɚ ɧɚ ɩɨɥɨɠɟɧɢɟ ɪɚɛɨɱɟɣ ɬɨɱɤɢ
ɩɨɤɨɹ. Ⱦɢɚɝɪɚɦɦɚ ɪɢɫ. 1.16 ɢɥɥɸɫɬɪɢɪɭɟɬ, ɤɚɤ ɬɨɤ, ɩɨɞɚɜɚɟɦɵɣ ɧɚ ɜɯɨɞ,
ɭɫɢɥɢɜɚɟɬɫɹ ɜ ɬɪɚɧɡɢɫɬɨɪɟ. ɉɪɢ ɢɡɦɟɧɟɧɢɢ ɜɯɨɞɧɨɝɨ ɬɨɤɚ ɪɚɛɨɱɚɹ ɬɨɱɤɚ
ɛɭɞɟɬ ɩɟɪɟɦɟɳɚɬɶɫɹ ɩɨ ɭɱɚɫɬɤɭ MN. ɉɪɢ ɷɬɨɦ ɛɭɞɟɬ ɨɛɟɫɩɟɱɢɜɚɬɶɫɹ
ɢɡɦɟɧɟɧɢɟ ɬɨɤɚ ɢ ɧɚɩɪɹɠɟɧɢɹ ɧɚ ɜɵɯɨɞɟ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨ ɜɯɨɞɧɨɦɭ
ɬɨɤɭ. ɂɡ ɪɢɫɭɧɤɚ ɜɢɞɧɨ, ɱɬɨ, ɟɫɥɢ ɪɚɛɨɱɭɸ ɬɨɱɤɭ ɩɨɤɨɹ ɜɵɛɪɚɬɶ ɧɟ ɬɚɤ,
ɤɚɤ ɭɤɚɡɚɧɨ, ɬɨ ɨɞɧɚ ɢɡ ɩɨɥɭɜɨɥɧ ɦɨɠɟɬ ɫɪɟɡɚɬɶɫɹ.
Ɇɨɳɧɨɫɬɶ, ɜɵɞɟɥɹɟɦɚɹ ɧɚ ɤɨɥɥɟɤɬɨɪɟ
PɄ = U Ʉ ⋅ I Ʉ .
(1.8)
Ⱦɚɠɟ, ɤɨɝɞɚ ɨɬɫɭɬɫɬɜɭɟɬ ɜɯɨɞɧɨɣ ɫɢɝɧɚɥ, ɜ ɬɪɚɧɡɢɫɬɨɪɟ ɜɵɞɟɥɹɟɬɫɹ
ɦɨɳɧɨɫɬɶ
PɄɊ =U ɄɊ ⋅ I ɄɊ .
(1.9)
ɉɨɷɬɨɦɭ ɥɢɧɟɣɧɵɣ ɪɟɠɢɦ ɷɧɟɪɝɟɬɢɱɟɫɤɢ ɧɟɜɵɝɨɞɟɧ.
1.3.4. Ʉɥɚɫɫɵ ɭɫɢɥɟɧɢɹ
ȼ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ ɜɵɛɨɪɚ ɩɨɥɨɠɟɧɢɹ ɪɚɛɨɱɟɣ ɬɨɱɤɢ ɩɨɤɨɹ ɪɚɡɥɢɱɚɸɬ
ɤɥɚɫɫɵ ɭɫɢɥɟɧɢɹ.
ȼ ɤɥɚɫɫɟ Ⱥ ɪɚɛɨɱɚɹ ɬɨɱɤɚ ɩɨɤɨɹ ɜɵɛɢɪɚɟɬɫɹ ɧɚ ɫɟɪɟɞɢɧɟ ɭɱɚɫɬɤɚ ɥɢɧɟɣɧɨɝɨ ɭɫɢɥɟɧɢɹ, ɤɚɤ ɷɬɨ ɛɵɥɨ ɨɩɢɫɚɧɨ ɜɵɲɟ (ɫɦ. ɪɢɫ. 1.16). ɇɚ ɪɢɫ.
1.17 ɷɬɚ ɬɨɱɤɚ ɨɛɨɡɧɚɱɟɧɚ ɛɭɤɜɨɣ Ⱥ. ɉɪɟɢɦɭɳɟɫɬɜɨ ɤɥɚɫɫɚ Ⱥ – ɜɵɫɨɤɚɹ
ɥɢɧɟɣɧɨɫɬɶ ɭɫɢɥɟɧɢɹ. ɇɟɞɨɫɬɚɬɨɤ – , ɤɚɤ ɭɤɚɡɵɜɚɥɨɫɶ ɜɵɲɟ, ɧɢɡɤɚɹ
ɷɧɟɪɝɟɬɢɱɟɫɤɚɹ ɷɮɮɟɤɬɢɜɧɨɫɬɶ. ɗɧɟɪɝɢɹ ɩɨɬɪɟɛɥɹɟɬɫɹ ɨɬ ɢɫɬɨɱɧɢɤɚ ɩɢɬɚɧɢɹ ɧɟɡɚɜɢɫɢɦɨ ɨɬ ɜɟɥɢɱɢɧɵ ɜɯɨɞɧɨɝɨ ɫɢɝɧɚɥɚ.
ȼ ɤɥɚɫɫɟ ȼ ɪɚɛɨɱɚɹ ɬɨɱɤɚ ɩɨɤɨɹ ɜɵɛɢɪɚɟɬɫɹ ɩɪɢ ɬɨɤɟ ɛɚɡɵ ɛɥɢɡɤɨɦ ɤ
ɧɭɥɸ (ɫɦ. ɪɢɫ.1.17). ɉɪɢ ɷɬɨɦ ɭɫɢɥɢɜɚɟɬɫɹ ɬɨɥɶɤɨ ɨɞɧɚ ɩɨɥɭɜɨɥɧɚ. Ⱦɥɹ
ɭɫɢɥɟɧɢɹ ɜɬɨɪɨɣ ɩɨɥɭɜɨɥɧɵ ɧɟɨɛɯɨɞɢɦɨ ɜɤɥɸɱɟɧɢɟ ɜɬɨɪɨɝɨ ɬɪɚɧɡɢɫɬɨɪɚ. ɉɪɟɢɦɭɳɟɫɬɜɨ ɤɥɚɫɫɚ ȼ ɛɨɥɟɟ ɜɵɫɨɤɚɹ ɷɧɟɪɝɟɬɢɱɟɫɤɚɹ ɷɮɮɟɤɬɢɜ25
ɧɨɫɬɶ. ɉɨɬɪɟɛɥɟɧɢɟ ɷɧɟɪɝɢɢ ɨɬ ɢɫɬɨɱɧɢɤɚ ɩɢɬɚɧɢɹ ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɨ
ɜɟɥɢɱɢɧɟ ɜɯɨɞɧɨɝɨ ɫɢɝɧɚɥɚ ɢ ɜɟɫɶɦɚ
ɦɚɥɨ ɩɪɢ ɟɝɨ ɨɬɫɭɬɫɬɜɢɢ. ɇɟɞɨɫɬɚɬɨɤ, ɜɵɡɜɚɧɧɵɣ ɧɟɥɢɧɟɣɧɨɫɬɶɸ
ɜɯɨɞɧɨɣ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɬɪɚɧɡɢɫɬɨɪɚ, – ɢɫɤɚɠɟɧɢɟ ɭɫɢɥɟɧɧɨɣ ɩɨɥɭɜɨɥɧɵ.
(Ⱦɥɢɬɟɥɶɧɨɫɬɶ
ɩɨɥɭɜɨɥɧɵ
ɦɟɧɶɲɟ ɩɨɥɭɩɟɪɢɨɞɚ).
Ⱦɥɹ ɭɦɟɧɶɲɟɧɢɹ ɢɫɤɚɠɟɧɢɣ ɩɟɪɟɯɨɞɹɬ ɤ ɤɥɚɫɫɭ Ⱥȼ, ɜ ɤɨɬɨɪɨɦ ɪɚɊɢɫ. 1.17. ȼɵɛɨɪ ɪɚɛɨɱɟɣ ɬɨɱɤɢ ɩɨɛɨɱɚɹ ɬɨɱɤɚ ɡɚɧɢɦɚɟɬ ɩɪɨɦɟɠɭɬɨɱɤɨɹ ɜ ɪɚɡɥɢɱɧɵɯ ɤɥɚɫɫɚɯ ɭɫɢɥɟɧɢɹ
ɧɨɟ ɩɨɥɨɠɟɧɢɟ (ɪɢɫ. 1.17). Ⱦɥɢɬɟɥɶɧɨɫɬɶ ɩɨɥɭɜɨɥɧɵ ɫɬɚɧɨɜɢɬɫɹ ɪɚɜɧɨɣ
ɩɨɥɭɩɟɪɢɨɞɭ, ɧɨ ɭɯɭɞɲɚɟɬɫɹ ɷɧɟɪɝɟɬɢɱɟɫɤɚɹ ɷɮɮɟɤɬɢɜɧɨɫɬɶ.
ȼ ɤɥɚɫɫɟ ɋ ɪɚɛɨɱɚɹ ɬɨɱɤɚ ɩɨɤɨɹ ɜɵɛɢɪɚɟɬɫɹ ɩɪɢ ɬɨɤɟ ɛɚɡɵ Iɛ = –Iɤɨ,
ɬ.ɟ. ɩɪɢ ɨɛɪɚɬɧɨ ɫɦɟɳɟɧɧɨɦ ɷɦɢɬɬɟɪɧɨ-ɛɚɡɨɜɨɦ ɩɟɪɟɯɨɞɟ (ɫɦ. ɪɢɫ.1.17).
ɉɪɢ ɷɬɨɦ ɢɫɤɚɠɟɧɢɹ ɭɜɟɥɢɱɢɜɚɸɬɫɹ, ɧɨ ɧɟɫɤɨɥɶɤɨ ɜɨɡɪɚɫɬɚɟɬ ɷɧɟɪɝɟɬɢɱɟɫɤɚɹ ɷɮɮɟɤɬɢɜɧɨɫɬɶ.
ȼ ɤɥɚɫɫɟ D ɪɚɛɨɱɚɹ ɬɨɱɤɚ ɩɨɤɨɹ ɜɵɛɢɪɚɟɬɫɹ ɩɪɢ ɬɨɤɟ ɛɚɡɵ Iɛ = –Iɤɨ,
ɬ.ɟ. ɩɪɢ ɨɛɪɚɬɧɨ ɫɦɟɳɟɧɧɨɦ ɷɦɢɬɬɟɪɧɨ-ɛɚɡɨɜɨɦ ɩɟɪɟɯɨɞɟ (ɫɦ. ɪɢɫ.1.17),
ɧɨ ɜɯɨɞɧɨɣ ɫɢɝɧɚɥ ɧɚɫɬɨɥɶɤɨ ɜɟɥɢɤ, ɱɬɨ ɬɪɚɧɡɢɫɬɨɪ ɫɪɚɡɭ ɩɟɪɟɯɨɞɢɬ ɜ
ɫɨɫɬɨɹɧɢɟ ɧɚɫɵɳɟɧɢɹ (ɬɨɱɤɚ N). Ʉɥɚɫɫ D ɩɨ-ɞɪɭɝɨɦɭ ɧɚɡɵɜɚɟɬɫɹ ɤɥɸɱɟɜɵɦ ɪɟɠɢɦɨɦ. ɗɬɨɬ ɪɟɠɢɦ ɧɚɢɛɨɥɟɟ ɷɧɟɪɝɟɬɢɱɟɫɤɢ ɷɮɮɟɤɬɢɜɟɧ.
1.3.5. Ʉɥɸɱɟɜɨɣ ɪɟɠɢɦ
Ɋɢɫ. 1.18 Ɋɚɛɨɱɢɟ ɬɨɱɤɢ ɜ ɤɥɸɱɟɜɨɦ ɪɟɠɢɦɟ
ȼ ɤɥɸɱɟɜɨɦ ɪɟɠɢɦɟ ɪɚɛɨɱɚɹ
ɬɨɱɤɚ ɦɨɠɟɬ ɧɚɯɨɞɢɬɶɫɹ ɬɨɥɶɤɨ ɜ
ɞɜɭɯ ɩɨɥɨɠɟɧɢɹɯ – ɜ ɬɨɱɤɟ ɨɬɫɟɱɤɢ
Ɉ ɢ ɜ ɬɨɱɤɟ ɧɚɫɵɳɟɧɢɹ ɇ (ɪɢɫ.
1.18). ȼ ɬɨɱɤɟ ɨɬɫɟɱɤɢ ɬɪɚɧɡɢɫɬɨɪ
ɡɚɩɟɪɬ, ɢ ɱɟɪɟɡ ɧɟɝɨ ɩɪɨɯɨɞɢɬ ɨɱɟɧɶ
ɦɚɥɟɧɶɤɢɣ ɬɨɤ I Ʉ 0 . ɉɨɷɬɨɦɭ, ɧɟɫɦɨɬɪɹ ɧɚ ɡɧɚɱɢɬɟɥɶɧɨɟ ɧɚɩɪɹɠɟɧɢɟ, ɦɨɳɧɨɫɬɶ, ɜɵɞɟɥɹɟɦɚɹ ɜ ɬɪɚɧɡɢɫɬɨɪɟ ɜ ɫɨɫɬɨɹɧɢɢ ɨɬɫɟɱɤɢ, ɨɱɟɧɶ
ɦɚɥɚ. ȿɫɥɢ ɧɚ ɛɚɡɭ ɩɨɞɚɧ ɬɨɤ, ɨɛɟɫ26
ɩɟɱɢɜɚɸɳɢɣ ɧɚɫɵɳɟɧɢɟ, ɬɨ ɩɚɞɟɧɢɟ ɧɚɩɪɹɠɟɧɢɹ U Ʉɇ ɧɚ ɬɪɚɧɡɢɫɬɨɪɟ ɦɚɥɨ. ɉɨɷɬɨɦɭ ɞɚɠɟ ɩɪɢ ɫɭɳɟɫɬɜɟɧɧɨɦ ɬɨɤɟ I Ʉɇ ɩɨɬɟɪɢ ɜ ɬɨɱɤɟ
ɧɚɫɵɳɟɧɢɹ ɧɟ ɜɟɥɢɤɢ. ɂ ɬɟ ɢ ɞɪɭɝɢɟ ɩɨɬɟɪɢ ɫɭɳɟɫɬɜɟɧɧɨ ɦɟɧɶɲɟ,
ɱɟɦ ɜ ɬɨɱɤɟ Ɋ ɜ ɥɢɧɟɣɧɨɦ ɪɟɠɢɦɟ. ɋɥɟɞɨɜɚɬɟɥɶɧɨ, ɤɥɸɱɟɜɨɣ ɪɟɠɢɦ
ɷɧɟɪɝɟɬɢɱɟɫɤɢ ɡɧɚɱɢɬɟɥɶɧɨ ɛɨɥɟɟ ɜɵɝɨɞɟɧ, ɱɟɦ ɥɢɧɟɣɧɵɣ. ɇɚ
ɪɢɫ. 1.19 ɩɪɢɜɟɞɟɧɚ ɫɯɟɦɚ, ɨɛɟɫɩɟɱɢɜɚɸɳɚɹ ɪɚɛɨɬɭ ɬɪɚɧɡɢɫɬɨɪɚ ɜ
ɤɥɸɱɟɜɨɦ ɪɟɠɢɦɟ.
ɑɬɨɛɵ ɨɰɟɧɢɬɶ ɩɪɟɢɦɭɳɟɫɬɜɚ ɤɥɸɱɟɜɨɝɨ
ɪɟɠɢɦɚ, ɪɚɫɫɦɨɬɪɢɦ ɩɪɢɦɟɪ. ɉɭɫɬɶ E Ʉ =100
ȼ; I Ʉɇ =10 Ⱥ; I Ʉ 0 = 0,01 Ⱥ; U Ʉɇ = 1 ȼ. ɉɪɢ
ɷɬɨɦ ɜ ɬɨɱɤɟ Ɋ I ɄɊ = 5 Ⱥ; U ɄɊ =50 ȼ, ɬɨɝɞɚ ɜ
ɥɢɧɟɣɧɨɦ ɪɟɠɢɦɟ ɜ ɬɪɚɧɡɢɫɬɨɪɟ ɜɵɞɟɥɹɟɬɫɹ
ɦɨɳɧɨɫɬɶ PɄɊ = U ɄɊ ⋅ I ɄɊ = 50 ⋅ 5 = 250 ȼɬ
ȼ ɤɥɸɱɟɜɨɦ ɪɟɠɢɦɟ ɜ ɬɨɱɤɟ ɧɚɫɵɳɟɧɢɹ ɢ
ɨɬɫɟɱɤɢ ɜɵɞɟɥɹɟɬɫɹ, ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ:
PɄɇ =U Ʉɇ ⋅I Ʉɇ =1⋅10 =10 ȼɬ,
PɄ 0 = U Ʉ 0 ⋅ I Ʉ 0 = 100 ⋅ 0,01 = 1 ȼɬ.
Ɋɢɫ.1.19. ɋɯɟɦɚ ɜɤɥɸɱɟɧɢɹ
ȿɫɥɢ ɜɪɟɦɹ ɧɚɯɨɠɞɟɧɢɹ ɬɪɚɧɡɢɫɬɨɪɚ ɜ
ɬɪɚɧɡɢɫɬɨɪɚ ɜ ɤɥɸɱɟɜɨɦ
ɪɟɠɢɦɟ
ɫɨɫɬɨɹɧɢɢ ɧɚɫɵɳɟɧɢɹ ɢ ɨɬɫɟɱɤɢ ɨɞɢɧɚɤɨɜɨ,
ɬɨ ɫɪɟɞɧɹɹ ɦɨɳɧɨɫɬɶ, ɜɵɞɟɥɹɟɦɚɹ ɜ ɬɪɚɧɡɢɫɬɨɪɟ (5,5 ȼɬ), ɩɨɱɬɢ ɜ 50 ɪɚɡ ɦɟɧɶɲɟ, ɱɟɦ ɜ ɥɢɧɟɣɧɨɦ ɪɟɠɢɦɟ, ɯɨɬɹ
ɫɪɟɞɧɢɣ ɬɨɤ ɱɟɪɟɡ ɧɚɝɪɭɡɤɭ ɜ ɨɛɨɢɯ ɫɥɭɱɚɹɯ ɨɞɢɧɚɤɨɜ. ɉɨɷɬɨɦɭ ɩɪɢɦɟɧɟɧɢɟ ɤɥɸɱɟɜɨɝɨ ɪɟɠɢɦɚ ɹɜɥɹɟɬɫɹ ɨɫɧɨɜɧɵɦ ɦɟɬɨɞɨɦ ɩɨɜɵɲɟɧɢɹ ɷɧɟɪɝɟɬɢɱɟɫɤɨɣ ɷɮɮɟɤɬɢɜɧɨɫɬɢ ɜ ɷɥɟɤɬɪɨɧɧɵɯ ɭɫɬɪɨɣɫɬɜɚɯ. ɉɪɢ ɪɚɫɱɟɬɟ ɧɟ
ɭɱɬɟɧɵ ɤɨɦɦɭɬɚɰɢɨɧɧɵɟ ɩɨɬɟɪɢ, ɜɨɡɧɢɤɚɸɳɢɟ ɩɪɢ ɩɟɪɟɤɥɸɱɟɧɢɹɯ
ɤɥɸɱɚ, ɨɞɧɚɤɨ, ɨɧɢ ɨɛɵɱɧɨ ɧɟ ɩɪɟɜɵɲɚɸɬ 15…25% ɢ ɩɨɷɬɨɦɭ ɧɟ
ɜɥɢɹɸɬ ɧɚ ɪɟɡɭɥɶɬɚɬɵ ɫɪɚɜɧɟɧɢɹ.
ȼ ɫɜɹɡɢ ɫ ɭɦɟɧɶɲɟɧɢɟɦ ɩɨɬɟɪɶ ɜ ɤɥɸɱɟɜɨɦ ɪɟɠɢɦɟ ɭɦɟɧɶɲɚɸɬɫɹ ɢ
ɬɟɩɥɨɨɬɜɨɞɹɳɢɟ ɭɫɬɪɨɣɫɬɜɚ (ɪɚɞɢɚɬɨɪɵ), ɚ ɫɥɟɞɨɜɚɬɟɥɶɧɨ, ɪɟɡɤɨ
ɭɦɟɧɶɲɚɸɬɫɹ ɝɚɛɚɪɢɬɵ ɢ ɦɚɫɫɚ ɭɫɬɪɨɣɫɬɜ. ɉɨɷɬɨɦɭ ɩɪɢɦɟɧɟɧɢɟ ɤɥɸɱɟɜɨɝɨ ɪɟɠɢɦɚ – ɨɫɧɨɜɧɨɣ ɩɭɬɶ ɭɥɭɱɲɟɧɢɹ ɦɚɫɫɨɝɚɛɚɪɢɬɧɵɯ ɢ
ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɩɨɤɚɡɚɬɟɥɟɣ ɷɥɟɤɬɪɨɧɧɵɯ ɭɫɬɪɨɣɫɬɜ.
ɉɪɟɢɦɭɳɟɫɬɜɚ ɤɥɸɱɟɜɨɝɨ ɪɟɠɢɦɚ.
1. Ɇɚɥɟɧɶɤɢɟ ɩɨɬɟɪɢ. ȼɵɫɨɤɢɣ ɄɉȾ.
2. Ʌɭɱɲɢɟ ɦɚɫɫɨɝɚɛɚɪɢɬɧɵɟ ɩɨɤɚɡɚɬɟɥɢ.
27
3. Ɍɪɚɧɡɢɫɬɨɪɵ ɧɟ «ɛɨɹɬɫɹ» ɪɚɡɛɪɨɫɚ ɩɚɪɚɦɟɬɪɨɜ ɩɪɢ ɩɪɚɜɢɥɶɧɨɦ
ɜɵɛɨɪɟ ɬɨɤɚ ɛɚɡɵ (ɜɵɛɨɪ ɩɨ ɧɚɢɦɟɧɶɲɟɦɭ ɤɨɷɮɮɢɰɢɟɧɬɭ ɩɟɪɟɞɚɱɢ).
4. Ɍɪɚɧɡɢɫɬɨɪɵ ɧɟ «ɛɨɹɬɫɹ» ɢɡɦɟɧɟɧɢɹ ɬɟɦɩɟɪɚɬɭɪɵ ɩɪɢ ɩɪɚɜɢɥɶɧɨɦ ɜɵɛɨɪɟ ɬɨɤɚ ɛɚɡɵ (ɜɵɛɨɪ ɩɨ ɤɨɷɮɮɢɰɢɟɧɬɭ ɩɟɪɟɞɚɱɢ ɩɪɢ ɧɢɡɲɟɣ
ɬɟɦɩɟɪɚɬɭɪɟ).
1.3.6. ɉɨɥɟɜɵɟ ɬɪɚɧɡɢɫɬɨɪɵ
ɉɨɥɟɜɵɟ ɬɪɚɧɡɢɫɬɨɪɵ (ɉɌ) – ɩɪɢɛɨɪɵ, ɭɩɪɚɜɥɹɟɦɵɟ ɷɥɟɤɬɪɢɱɟɫɤɢɦ ɩɨɥɟɦ, ɞɟɥɹɬɫɹ ɩɨ ɩɪɢɧɰɢɩɭ ɞɟɣɫɬɜɢɹ ɧɚ ɉɌ ɫ ɡɚɬɜɨɪɨɦ ɜ ɜɢɞɟ pn ɩɟɪɟɯɨɞɚ ɢ ɧɚ ɉɌ ɫ ɢɡɨɥɢɪɨɜɚɧɧɵɦ ɡɚɬɜɨɪɨɦ (ɉɌɂɁ). ɉɨɫɥɟɞɧɢɟ
ɩɨ ɢɯ ɫɬɪɭɤɬɭɪɟ ɧɚɡɵɜɚɸɬ ɬɚɤɠɟ ɆɈɉ-ɬɪɚɧɡɢɫɬɨɪɚɦɢ (ɦɟɬɚɥɥ – ɨɤɢɫɟɥ
– ɩɨɥɭɩɪɨɜɨɞɧɢɤ) ɢɥɢ ɆȾɉ-ɬɪɚɧɡɢɫɬɨɪɚɦɢ (ɦɟɬɚɥɥ – ɞɢɷɥɟɤɬɪɢɤ – ɩɨɥɭɩɪɨɜɨɞɧɢɤ).
ɇɚ ɪɢɫ. 1.20, ɚ, ɛ ɩɪɢɜɟɞɟɧɚ ɫɯɟɦɚ ɜɤɥɸɱɟɧɢɹ ɢ ɫɬɪɭɤɬɭɪɚ ɉɌ ɫ ɡɚɬɜɨɪɨɦ ɜ ɜɢɞɟ p-n ɩɟɪɟɯɨɞɚ. ɗɥɟɤɬɪɨɞ, ɢɡ ɤɨɬɨɪɨɝɨ ɜɵɯɨɞɹɬ ɨɫɧɨɜɧɵɟ
ɧɨɫɢɬɟɥɢ, ɧɚɡɵɜɚɟɬɫɹ ɢɫɬɨɤɨɦ. ɗɥɟɤɬɪɨɞ, ɤɭɞɚ ɩɪɢɯɨɞɹɬ ɨɫɧɨɜɧɵɟ ɧɨɫɢɬɟɥɢ, ɧɚɡɵɜɚɟɬɫɹ ɫɬɨɤɨɦ. Ɉɬ ɢɫɬɨɤɚ ɤ ɫɬɨɤɭ ɧɨɫɢɬɟɥɢ ɞɜɢɠɭɬɫɹ ɩɨ
ɤɚɧɚɥɭ. ɗɥɟɤɬɪɨɞ, ɪɟɝɭɥɢɪɭɸɳɢɣ ɲɢɪɢɧɭ ɤɚɧɚɥɚ, ɧɚɡɵɜɚɟɬɫɹ ɡɚɬɜɨɪɨɦ.
ɚ)
ɛ)
Ɋɢɫ. 1.20. ɋɯɟɦɚ ɜɤɥɸɱɟɧɢɹ ɫ
ɨɛɳɢɦ ɢɫɬɨɤɨɦ (ɚ), ɫɬɪɭɤɬɭɪɚ (ɛ)
ɢ ɜɵɯɨɞɧɵɟ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɩɨɥɟɜɨɝɨ ɬɪɚɧɡɢɫɬɨɪɚ ɫ ɡɚɬɜɨɪɨɦ ɜ
ɜɢɞɟ p-n ɩɟɪɟɯɨɞɚ (ɜ)
ɜ)
28