Теория функциональных полей над конечным полем констант
Выбери формат для чтения
Загружаем конспект в формате pdf
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
2
..........................................................................................................................................3
1.
1.1.
1.2.
1.3. p1.4.
2.
2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
3.
3.1.
3.2.
3.3.
3.4. P3.5.
4.
4.1.
4.2. AG4.3. AG4.4.
4.5.
4.6.
5.
5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
6.
7.
7.1.
7.2.
8.
8.1.
8.2.
8.3.
.............................................................................................4
.............................................................................................................................4
.....................................................................................7
* ..............................................................9
............................................................................10
....................................................................................................12
..............................................................................................................12
........................................................................................................................................12
..................................................................................14
.........................................................................................15
..................................................................................................................................16
.
..........................................................................18
...............................................................20
................................................................................................................20
.......................................................................................................................21
–
............................................................................................................23
..........................................................................................................24
....................................................................................................................................26
......................................................................................28
*.............................................................................................................28
CL (D, G) ...................................................................................................................28
C (D, G)...................................................................................................................30
AG.....................................................................................................31
AG...........................................................................................................33
AG.........................................................................................................36
......................................................................40
.................................................................................................................................40
.....................................................................................................................42
............................................................................................................................44
.....................................................................................................46
...............................................................................................................47
–
..............................................................................................48
* .....................................................................................50
.......................................................................................................................53
..................................................................55
..............................................................................................55
......................................................................58
*.................................................................................................61
*......................................................................................................61
* ...........................................................................................................................61
,
,
*..............................................................................63
............................................................................69
3
.
,
,
.
.
,
-
.
.
-
,
.
XIX
.
,
.
XX
,
.
.
,
,
,
,
-
.
,
,
.
,
.
,
,
,
[4].
[5]
.
[6]
.
.
,
,
,
-
[7]
[3].
[1]
,
[2].
,
.
,
,
,
,
.
,
-
,
.
–
,
.
-
,
.
4
1.
1.1.
1.1.1.
.
,
K/k
z K
,
K/k
-
k.
1.1.2.
K/k
(
).
y
1.1.3.
.
-
K(
),
k
,
K = k(y).
,
-
:
1) char k = 0,
2) char k = p > 0
y
p
p
k = {x | x
k;
k} = k (
.
x
k
p
,
:x
x
p
-
k
-
k).
1.1.4.
.
1.1.5.
.
,
.
.
K= k
)
,
(
1.1.6.
K= k,
.
k
L
K.
K
L
L.
x
1.1.7.
.
k,
K,
xp
n
L
K
(x) = x
GL.
k–
p > 0, K –
k,
.
x
K
K
x
n 0,
k
a
k
-
k.
2)
.
k.
1.1.8.
:
1)
n
,
k,
: k
x
,
-
k.
L–
. L–
GL = Aut (K / L)
,
.
q
x
Tp
K
n
a
k.
3)
S
K,
,
K = k(S),
s
S
-
k.
1.1.9.
,
.
1.1.10.
K,
1) K
2)
.
K / k,
.
K/k–
k.
k K).
-
K0 –
K,
, K0 –
k (
K0.
K/k–
,
K0 / k –
.
-
5
3)
K / k–
G K,
, G–
G
K ,
K
G
k
K
K –
k.
G
1.2.
1.2.1.
.
A
,
A–
,
A\A
A,
(
-
A\A
.
,
p = A\A
A–
).
.
/8
1.2.2.
x
.
n
p = 2 /8 .
.
A/R–
1
.
a0, a1,..., an
n
x + an 1 x
x
A,
R,
1
n 1
x
R
+ ... + a1 x + a0 = 0.
A,
A
R.
R
(
-
R=R,
A.
.
1.2.3.
R,
-
,
,
R,
),
A
R;
R
-
,
).
K/k–
,
K[T1,…, Tn] / k[T1,…, Tn]
–
.
1.2.4.
K,
.
x K
,
K–
x
,
1.2.5.
1) A –
2) A
.
A,
x
x
x
2)
K
-
.
A.
A–
K.
.
K.
x – y A\A .
y = x(1 a) A \ A ,
y = y(a
, A–
A
A.
K
1)
,
1
1
1)
x
A\A
n
.
.
K,
x–
.
y
x, y
0.
,
A.
a0,…, an 1
1
n
x + an 1 x
x
n 1
z
x
A,
,
A,
,
A,
(n 1)
,
1 n 1
= (x )
A,
x + an 1 + … + a1 x
x
A.
y = 0,
a A,
.
a
xz
A\A .
.
x
1
1
A,
A.
+ … + a1 x + a0 = 0.
,
x
,
A\A .
x=0
a = y / x K.
x
n+2
+ a0 x
.
n +1
= 0,
a0
0.
-
6
1.2.6.
:
a) A –
.
A,
,
-
p
b)
t
A,
.
,
z
n
z = ut ,
n–
0, u
1)
(1.1)
A .
2).
p.
t–
(1.1) :
ut
n m
=v
,
u = v.
.
A,
:
, n
t,
z–
,
, z = z1 t
z1 = z2 t.
,
,
A
,
(zm) = (zm +1) = …
, zm = y t zm
y t = 1.
n 1
z
n=m
A
z1
A.
z1 –
,
t–
zi = zi +1 t
(z1) (z2) …
m.
zm +1 = y zm
,
t–
u–
.
zn 1 = u t,
2
1) :
n 1
,
z = ut
n 1.
, x = yt
y
A–
.
p = (t),
,
-
a–
-
n
n (u –
a
x
n
zi
n
.
a
(1.1),
-
= ut .
,
,
A.
m.
.
z = z1 t = z2 t = … = zn 1 t
,
u, v –
z1, z2,... ,
,
2)
m
ut = vt ,
,
:
y
n
,
(1.1)
(1.1) :
,
,
.
,
A
m
x = vt ,
v–
m
).
n.
-
, a = (t ) = (t) = p –
n
A.
n
n
(t) –
.
.
.
1.2.7.
,
.
,
.
t,
A.
,
= A / p,
,
1.2.8.
1)
A.
.
A–
t–
n
z = ut ,
2) A
3) A
A,
n
z
, u
.
n.
1)
2)
3)
, K–
.
1).
1.2.6.
.
K
-
A .
K.
a
A
a=t A
n
-
7
1.2.9.
.
A–
.
A,
t
A
p
t–
A.
1.3.
1.3.1.
K
1)
2)
3)
.(
,
v: K
x, y K :
x, y K :
x K:
)
:
v(xy) = v(x) + v(y),
v(x + y) min(v(x), v(y)),
v(x) =
x = 0,
,
v1
c > 0,
(
a
a< , a+
1.3.2.
a)
-
{ },
:
= ,
+
= .
v2
K
v1 = cv2.
,
,
(
v(K )
)
K
-
):
v
,
-
v.
b)
c)
x, y
K
v(x)
n
x K, n
v(y),
v(x ) = n v(x).
v(x + y) = min(v(x), v(y)).
1.3.3.
.
K
| |:K
,
:
1)
2)
3)
x K: |x| 0
|x| = 0
x = 0,
x, y K : | xy | = | x || y |,
x, y K : | x + y | | x | + | y |.
| |
3)
x, y
K:
|x + y |
(
,
max{| x |, | y |}.
(
(
3)
x, y
K: |x|
1.3.4.
x, y
,
K–
|y |
)
| x + y | = max{| x |, | y |}.
. 1)
,
,
| |.
K
,
-
K
v–
| 0 | = 0.
,
c1 , c2 –
:)
.
K, c > 1.
|x| = c
a)
b)
(
d(x, y) = | x – y |.
.
,
1.3.5.
)
,
K
)
x
K, x
0,
v(x)
.
K
.
> 1,
| |1
.
| |2
-
8
c)
,
-
.
2)
,
| |
K, c > 1.
x
K, x
-
v(x) = log c | x |.
,
v(0) = .
a)
b)
,
K
c1 , c2 –
v2
,
.
v1
c)
.
-
1.3.6.
a)
v
b)
v
).
= {x
= {x
v
2)
v
v–
.
0} = {x K | x |
K v(x)
K v(x) = 0} = {x
c) pv = {x
1)
v.
> 1,
,
K v(x) > 0} = {x
K, | |
1},
K | x | = 1},
K | x | < 1}.
–
K (
,
K–
v.
3) pv =
v
v
\
v.
v
v / pv
=
v.
1.3.7.
.
v
K
,
s.
v(K ) = s
v
t
K,
,
,
v(t) = s = 1.
-
t
v–
K.
t
v
1.3.9.
,
v
v,
.
v(t) = 1.
v–
K, | | –
c > 1, p = pv –
,
K,
| |,
p =t
n
n
n
z = yt ,
v
y
n
n
(p )n
v.
p-
.
v(z) = v(y) + nv(t)
v
, p –
(p )n
).
s = 1.
v.
).
2)
n
-
(
,
1.3.8.
K.
1) v –
z
v).
n
1/c .
z
n
K
|z|
n
1/c .
,
-
0.
x
(x + p )n
n
K
(x + p ) x
n
K, n
p
x.
K.
9
U
K
,
x
U
x+p
n
.
1.4. p-
*
1.4.1.
p–
.
x = a/b
x = pn
n–
(
p
1.4.2.
.
,
vp :
{ }
,
vp (x) = n.
,
-
.
.
p.
x
, x
0,
| x |p = p
1.4.4.
,
-
a1
,
b1
p
1.4.3.
a1b1.
vp (x)
vp (0) = .
),
x = a / b.
, x
1.3.5 1)
v p ( x)
| 0 | p = 0.
,
| |p : K
-
p,
.
p-
1.4.5.
1)
.
.
K=
| | = | |p
p
–
=
(p)
p-
.
= {a / b
p b}
.
,
(p) = p
,
p.
2)
pp = p
p.
p
= {a / b
p b, p a}.
–
p.
3)
p
p
= {0, 1,…, n – 1} –
1), 2)
.
a/b
n
n
,
|a/b| = p
a/b
n > 0,
p,
.
, a/b
p a1 b1,
p
0.
p / pp
p
a / b = p a1 / b1,
a/b
=
,
, p a, p b.
0,
n
n = vp (a / b),
n
1,
,
|a/b| = p .
,
,
p b.
,
.
a/b
pp
10
3).
,
p
=
(p).
,
0,
p / pp.
1,…, p – 1
)
m, n
,
)
n (mod pp).
{0, 1,..., p – 1}
m
p m–n
pp.
, m = n,
a/b
p,
s1 n 1
,
s p + nb = a,
,
.
. p b.
,
n (mod pp).
n
, a/b
r (mod pp).
. m – n = pa / b,
b
.
-
s = a s1, n = a n1.
p.
p b,
0, 1,..., p – 1
, p
s1 p + n1 b = 1.
pp,
m–n
a
a nb
ps
n =
=
b
b
b
. a/b
,
a
pp,
n = p q + r,
r < p.
r (mod pp).
n
pp
,
0, 1,..., p – 1.
, {0, 1,..., p – 1}
,
(
p
p / pp
=
=
p
-
pp ,
–
p
1.4.6.
.
.
).
)
| | p,
,
p–
| |.
1.5.
1.5.1.
k, k(x) –
z k(x)
g(x) 0.
1.5.2.
k–
, k[x] –
x
(
)
: z = f (x) / g(x),
p(x) –
k[x].
z = p ( x) n
n–
(
1.5.3.
p(x)
),
z = f (x) / g(x).
.
vp(x) : k(x)
,
x
k.
f (x), g(x) –
z = f (x) / g(x)
k[x]
k(x), f (x)g(x)
-
f1 ( x )
,
g1 ( x)
f1 (x)g1 (x).
vp(x) (z)
vp(x) (0) = .
vp(x) (z) = n.
,
.
{ }
k(x)
.
p(x)
.
1.3.5 1)
1.5.4.
,
1)
k(x)
.
1.5.2.
k(x) –
.
, vp(x) –
vp(x)
p(x)
= k [x](p(x)) = {f (x) / g(x)
k(x) p(x) g(x)}
-
11
–
k [x]
(p(x)) = p(x)k[x]
k [x]
k [x].
,
,
-
p(x).
2)
vp(x)
Pp(x) = p(x)
p(x).
p(x)
= {f(x) / g(x)
k(x) p(x) g(x), p(x) f(x)}.
–
p(x).
3)
Fp(x) =
p(x) = x
,
x
p(x) / Pp(x)
, Px
k[x] / (p(x)).
, P
Fx
F
1.4.5 (
1.5.5.
z = f (x) / g(x)
k(x), f (x)g(x)
.
).
v (z) = deg g(x) – deg f (x).
(
),
z = f (x) / g(x).
.
1.5.6.
.
,
v : k(x)
1.5.7.
.
1.5.5.
1 / x.
k(x) –
1)
,
{ }
.
k(x)
,
v (z)
v (0) = .
, v –
-
v
= {f(x) / g(x)
,
, k [1 / x]
2)
k(x) g(x)
0, deg f(x)
deg g(x)}.
.
v
P = p(x)
1 / x.
= {f(x) / g(x)
k(x) deg f(x) < deg g(x)}.
–
.
3)
F =
/P
k.
1.4.5 (
1.5.8.
v
vp(x),
.
k(x)
p(x) –
).
,
k [x].
12
2.
2.1.
2.1.1.
F / k,
.
F
k
K
k(x).
)
(
k(T)
x
F,
,
F
k
F
.
k(x),
x,
k
2.1.2.
F/k
-
T
.
,
.
.
k
k
k
F / k(x)
x
.
-
F/k
,
F,
x
F / k.
2.1.3.
.
k
F/k–
x
.
F
,
2.1.4.
,
x
char k = 0,
char k = p > 0,
.
p
F .
x
F/k –
F
k.
y
F,
,
F = k(x)(y) = k(x, y).
y,
,
k(x)[T]
g
k(x).
T,
,
y,
.
g(y) = 0.
(2.1)
(2.1)
k[x],
f (x, y) = 0,
,
.
,
f
(2.2)
k,
.
F/k –
v(x) = 0
(2.2)
k[X, Y],
X, Y –
.
-
2.2.
2.2.1.
.
x
,
k, x
,
v
2.2.2.
k,
.
v–
F / k.
P = pv
1.3.6 – 1.3.7
F / k.
F / k,
)
.
P.
(
)
v
P
-
v
t
v
F
k.
v
(
v
0.
= {x
F x
P
1
P},
P.
13
,
2.2.3.
.
.
–
F / k,
k.
1)
–
F.
2)
P–
,
P n = (0).
(2.3)
n 1
2.2.4.
,
P
vP
P.
t
=P
1)
F / k,
(2.3)
n
z
-
P =t
n
P
z
.
z= t
1
.
…
, z
P
n
….
0,
n
n
.
z
P
n +1
,
0,
P ,
,
,
–
n
0.
.
2)
z
z=
,
1
1
z
n
,
1
t ,
, z
–
,
,
F
z
1
= t
n
n–
.
n
z= t ,
, n
.
3)
4)
,
1.2.6
vP (z) = n.
,
.
, vP (0) = .
1.4.2
vP –
,
5)
vP
vP
= {x
F vP (x)
, P–
2.2.5.
| |P –
| |P,
2.2.6.
,
pvP = {x
0} =
F / k,
k.
(
)
F vP (x) > 0} = P.
vP.
P–
F / k.
.
P-
-
vP
F,
-
.
.
F / k,
-
k,
F / k.
F/k
2.2.7.
.
P
k–
F,
F.
z
t
.
p > 0, z
F / k.
P
F
vP (z)
0 (mod p)
,
-
14
2.2.8.
.
1.5.8
Pp(x),
P
,
k(x)
k[x].
p(x) –
2.3.
2.3.1.
.
1)
FP =
P/
P
F / k.
P
P
-
k.
2)
[FP : k]
,
, k=
,
q
3)
d = deg P
FP =
qd
).
deg P = 1
2.3.2.
.
Pp(x),
.
1.5.4
p(x) –
1.5.7
,
k[x] / (p(x)),
, deg Pp(x) = deg p(x).
, P
k,
k.
, P
.
,
k=
k(x)
k[x]
Fp(x)
P
P ( -
k(x)
,
q
2.3.3.
q+1
.
.
z
P
P,
k.
.
P–
F / k,
P
:
P
FP
-
F
P ( z ),
z(P) =
F
P,
F\
P.
z
,
FP
z
{ }, z
z(P)
P.
2.3.4.
).
k(x)
z(P ) =
z=
0,
g( )
0.
,
nx
n
...
mx
m
...
z(P ) = 0,
,
1)
P–
,
z = f(x) / g(x)
f ( ) / g ( ), g ( )
n
2.3.5.
/
n,
k(x),
n
m,
n
m,
n
m.
F / k, x, y, z
P,
k.
,
(x + y)(P) = x(P) + y (P),
-
(xy)(P) = x(P) y (P),
(P) = .
k,
15
2) z(P) = 0
z.
3) z(P) =
z
P
z
n = vP (z) > 0
vP (z) > 0.
,
vP (z) < 0.
P
P
,
P
z.
2.3.6.
.
k
z
F
,
2.3.7.
.
:
k
,
FP
P
FP
,
,
.
FP.
P
n = vP (z)
P K
K.
K
P.
K,
P
:K
FP
-
FP
,
FP
P FP
.
2.3.8.
,
2.3.7
z – z(P)
Ker
P
z
P (z)
P
= P.
,
P
k
P
= FP
= FP + P.
2.3.9.
(
P (z(P)),
FP
P = {0},
(2.4)
,
=k
P–
1,
P.
(2.5)
.
,
z
k
),
F
z(P)
z:
k
. z
F/k
FP = k
P.
{ }.
k
F
-
P
).
P
= z(P) =
,
{ }, P
z
-
z(P),
.
,
F/k
-
.
2.4.
2.4.1.
(
).
F / k, z1,…, zn
F, r1,…, rn
vPi ( z zi ) = ri
2.4.2.
a1,…, an k.
P1,…, Pn –
2.4.1
j
ij
–
.
FPj
Pj
F.
,
1
,
i
z
F,
,
n.
F/k
zj
{1,..., n}
vPi ( z j ) = 1 –
P1,…, Pn –
k,
F,
,
i j,
zj (Pi ) = 0
i
j
zj (Pj) = cj –
-
16
n
a j c j 1z j
z=
F.
(2.6)
j 1
i
{1,..., n}
z(Pi ) = ai.
P1,…, Pn
,
k
zj (Pj) = cj
k
(2.6)
z
.
.
2.4.3.
(
).
2.5.
2.5.1.
.
F/k
D=
nP P
P
P
vP (D) = nP,
nP = 0,
,
,
-
.
1)
P,
nP
0,
D
-
supp D.
2)
,
.
, D = 0,
vP (D) = 0.
3)
,
nP P =
nP P
P
P
( nP
.
nP ) P .
P
F/k
DivF.
4)
5)
,
-
0.
D
D
,
vP (D)
D
6)
0.
D
deg D =
: D = P, P
F.
(
D D,
D
D
D–D
0),
0.
vP ( D) deg P .
P
deg : DivF
Div 0F
deg D
.
DivF,
2.5.2.
z.
z
(z)0 =
, D
.
F, z
:
0.
Z (
N) –
z;
vP ( z ) P
P Z
(z) =
-
( vP ( z )) P
z;
P N
(z) = (z)0 – (z) =
vP ( z ) P
P
z.
(
)
-
17
,
vP (z) = 0
(z)0, (z)
(z)
F \ {0}
(
,
x, y
P,
,
,
(z)
.
,
div(z).
-
)
(xy) = (x) + (y),
,
PrincF
2.5.3.
DivF.
.
k
z
F
deg (z)0 = deg (z) = [F : k(z)],
,
deg (z) = 0.
2.5.4.
1)
.
D
z
Div 0F .
PrincF –
F/k –
.
D
,
F.
D D .
D – D = (z)
,
D–
D
D
.
[D].
2)
Pic0F = Div0F / Princ F .
F / k.
2.5.5.
.
F = k(x) –
k[x], v1,…, vn,
1 i n 1
v pi ( x ) ( z ) = vi
vq j ( x ) ( z ) =
j
j
m
Ppi ( x ) –
JF.
, p1 (x),…, pn (x), q1 (x),…, qm (x) –
> 0,
1,…, m –
g(x) = p1 ( x)v1 ... pn ( x )vn ,
r = deg g(x),
JacF
h(x) = q1 ( x ) 1 ... qm ( x )
s = deg h(x),
m
,
z = g(x) / h(x).
:
vi
Pq j ( x ) –
z,
z,
j
v (z) = s – r
P –
z,
s < r.
u(x) –
s–r
z,
s > r,
,
pi (x)
n
D+ =
i 1
r–s
qj (x),
vu(x) (z) = 0.
m
vi Ppi ( x ) ,
D =
j 1
j Pq j ( x )
D+ > 0, D > 0, deg D+ = deg g(x) = r, deg D = deg h(x) = s.
(z)0 = D+ + (s – r)P ,
.
,
(z) = D .
s < r,
(z)0 = D+,
(z) = D + (r – s)P .
(z) = (s – r)P + D+ – D ,
deg (z) = 0.
s > r,
-
18
2.6.
.
2.6.1.
.
D
F/k
L(D) = {z
k
F \ {0} (z) + D
0}
{0}
.
2.6.2.
.
L(D)
–
,
D.
2.6.3.
.
1) L(0) = k.
2) deg D < 0
3) D
L(D)
L(D )
deg D = deg D .
L(D) L(D )
dim(L(D ) / L(D)) deg D – deg D.
D = D+ D ,
D+ 0, D 0,
dim D 1 + deg D+,
L(D)
.
4) D D
5)
1)
F / k,
L(D) = {0}.
D
2)
D
3)
D, D –
(
D,
).
. D = D + (g)
g
L(D)
,
,
L(D ), f
L(D)
P.
vP (t) = vP (D ) = vP (D) + 1.
,
vP (xt)
0,
. xt
x
Ker
x
,
L(D).
k
2.6.4.
2.6.5.
1) D –
xt
P
vP (t),
vP (x)
vP (D).
-
dim k FP = deg P = deg D – deg D.
dim L(D+) = dim(L(D+) / L(0)) + 1
D+
D
dim D
-
F/k
-
deg D+ + 1.
D
D
,
vP (xt) > 0,
L(D) L(D+).
L(0) = k,
.
L(D).
;
F,
vQ (x)
vQ (D ) = vQ (D),
, Ker = L(D).
: L(D ) / L(D) FP.
deg 0.
.
t
(xt)(P).
,
4)
dim L(D)
FP, x
,
dim(L(D ) / L(D))
5)
D D+,
dim(L(D+) / L(0)) deg D+
-
k
(xt)(P) = 0
1,
,
.
vP (D ) =
vP (x)
,
vP (t) = vP (D)
Q,
.
2.5.3.
D =D+P
L(D )
P.
x
vP (x) >
1
.
: L(D )
.
fg
F .
,
3).
L(D )
*4)
,
(D).
:
19
2) dim D 1;
3) dim D = 1.
1)
2)
2)
3)
D
D = (x)
,
dim D
D
D.
x
1,
F ,
.
1
,
, x
x L(D), x 0.
L(D),
deg D = deg D = 0.
, dim D = dim D = dim 0 = 1.
3) 1)
dim D = 1.
x
L(D), x
,
0.
(x) + D
dim D 1.
D = (x) + D.
D = 0.
-
0.
deg((x) + D) = deg((x)) + deg D = 0,
1
(x) + D = 0,
D = (x) = (x ) –
2.6.6.
(
.
).
g,
F / k,
,
D
dim D
deg D
2.6.7.
deg D + 1 – g
,
(2.7)
(2.7)
.
.
g
F/k (
2.6.8.
L(D), z
z
).
.
2.5.5,
0,
,
v pi ( x ) ( z ) = vi
vq j ( x ) ( z ) =
(z)
D,
0 = v pi ( x ) ( D) , 1
v (z) = deg g(x)
i
n;
j
= v (D),
=0
1 j
deg g(x)
L( P ) = {g(x)
,
0, D = P .
–
.
0 = vq j ( x ) ( D) ,
j
-
dim( P ) = + 1.
m,
. z = g(x) –
.
.
,
k[x] deg g(x)
},
deg( P ) =
,
dim( P ) = deg( P ) + 1 – g,
.
+ 1 = + 1 – g,
,
,
,
k(x)
.
g = 0.
k=
q,
20
3.
3.1.
3.1.1.
.
F/k
D: F
,
x, y
F,
-
F
k
1) D(x + y) = D(x) + D(y),
2) D( x) = D(x).
3) D(xy) = xD(y) + yD(x),
2
3
D = D D, D = D D D
.
3.1.2.
(
4) D( ) = 0
k,
n
n 1
5) D(x ) = nx D(x),
1
2
6) D(x ) = x D(x)
x
x
),
F
n–
F, x 0,
0,
.
3.1.3.
(
),
DerF
F/k
F
3.1.4.
.
F / k,
.
k
x–
1)
DerF
x
x (
2)
3)
-
:
t
,
x (x)
= 1.
-
x).
F
,
x (t)
DerF
0.
F ,
.
D
,
-
x
DerF
D = D(x) x.
,
y–
F / k,
y
3.1.5.
k[x], h(x) 0,
(
).
=
F = k(x) –
,
, g(x), h(x) –
= (g(x) / h(x)) .
, M–
k
(3.1)
y (x) x.
x (g(x) / h(x))
3.1.6.
F/k–
F M
(3.1)
F.
D: F
D(xy) = xD(y) + yD(x).
M,
,
x, y
F
.
-
21
3.2.
3.2.1.
.
F/k–
.
F
F
1
d:F
F,
:
M
F
F
:
M,
F
,
D=
D: F
d.
M
,
-
M
F
d
D
F
F.
F
3.2.2.
M=F
D:
F
D,
F
=
D ( ).
D: F
F,
F
F–
,
,
D=
DerF
F, (D, )
F
D,
D,
=0
=0
D
,
DerF
F
F
:
,
(DerF)*,
F
(
(
DerF,
(DerF)*.
)
F
= 0,
D = 0.
.
(D) = D,
(
d.
D,
F.
.
D
,
).
,
),
,
.
-
,
,
F
(DerF)*.
.
.
3.2.3.
x
F
D
DerF
D, dx =
1
.
F
F
S,
. F
(S)
F dx .
=
D (dx)
= D(x).
S–
(3.2)
d x,
x
F, F
(S)
–
(S)
F ,
W–
x F
d(xy)
x, y
F
k.
F
=F
F
F
(S)
xdy
ydx,
d(x + y) – dx – dy,
/ W.
d( x)
F
dx, x
F.
dx
(S)
F
F
F
(S)
d.
22
.
dx
x
F
F
-
x.
3.2.4.
:
3.1.1
,
x, y
F,
k
n 0
-
1) d(x + y) = dx + dy,
2) d( x) = dx.
3) d(xy) = xdy + ydx,
,
4) d( ) = 0
n
n 1
5) d(x ) = nx dx,
1
2
6) d(x ) = x dx
3.2.5.
k,
n–
x F, x
.
0,
.
k
x F
F.
1) x –
2) dx 0,
3) dx –
,
F
-
:
F / k,
F.
F
F
= u dx,
3.2.6.
1)
y
:
u
F,
dy = u dx
D= x
x (y)
dy =
=
u F.
x,
dy =
x,
u dx = u
2)
y–
x,
dx = u x (x) = u,
dy
dx
dx
t–
= u dx = v dy
dy
.
dx
dy
dy dx
dy
dx =
dt =
dt ,
dx
dx dt
dt
(
)
dy dx
dy
=
.
dx dt
dt
3.2.7.
.
-
u, v
,
dy =
x (y).
(3.3)
u = v x (y) = v
3)
-
dy
=
dx
,
F
u dx = v x (y) dx,
(3.3)
(3.2),
x (y) dx.
dy =
F,
F.
dy,
3.1.5 dx –
d(g(x) / h(x)) = (g(x) / h(x)) dx.
k(x)
23
3.3.
–
3.3.1.
k
–
.
z
.
F,
t–
0, P –
F / k, t
= z dt
F/k
F.
vP ( ) = vP (z).
3.3.2.
.
t
,
3.3.1
P.
vP ( )
, vP ( ) = 0
.
,
.
P,
-
,
,
( )=
vP ( ) P .
P
3.3.3.
.
( )
F,
0,
,
.
F
vP ( )
-
.
3.3.4.
),
(
x
F
F
) = (x) + ( ).
,
,
,
3.3.5.
.
.
D
F (D)
F/k
={
–
F \ {0}
( )
D}
{0}.
k
3.3.6.
.
F.
D
i (D) = dim k
F (D)
D.
i (D) 0
F (0),
.
D
,
.
.
3.3.7.
( )
.
F/k –
.
g.
F (0)
= g.
W = ( )–
k
D
-
,
0,
i (0) = dim k
3.3.8.
.
L(W – D)
F / k.
F (D),
x
x .
, i (D) = dim k (W – D).
3.3.9.
(
–
)
D
dim D = deg D + 1 – g + dim(W – D).
,
(3.4)
(3.4)
dim D = deg D + 1 – g + i (D).
(3.5)
24
3.3.10.
.
1) deg W = 2g – 2,
2) dim W = g,
3)
deg D 2g – 1,
–
i (D) = 0
(
,
,
):
:
dim D = deg D + 1 – g.
,
B–
,
,
3.3.11.
deg B = 2g – 2
dim B
).
.
B–
A,
dim A
3.3.12.
g,
1+
.
,
deg A
2g – 2,
1
deg A .
2
F = k(x) –
(dx).
Pp(x).
p(x) –
-
k.
k[x].
p(x) –
d(p(x)) = p (x) dx,
-
dx = (1 / p (x)) d(p(x))
1
1/x –
2
d(1 / x) = x dx,
, vp(x) (dx) = vp(x) (1 / p (x)) = 0.
,
dx = x d(1 / x).
2
P ,
v (dx) = v ( x ) = 2.
,
(dx) = 2P .
deg (dx) = 2 = 2g – 2 < 0,
= z dx
k(x).
dim (dx) = 0 = g.
z k(x).
( ) = (z) – 2P = (v (z) – 2)P +
vP ( z ) P .
P P
–
,
, D=
( )
k[x],
P –
.
P .
vp(x) ( ) = vp(x) (z)
k(x) (D).
= z dx
0 = vp(x) (D).
2.
1,
k(x) (
k(x) (D)
-
p(x) –
z–
.
,
= v (D),
= {0}.
P ) = {g(x) dx g(x)
k(x) (D)
k(x).
,
v ( ) = v (z) – 2 = deg z – 2
deg z
z
,
k(x) (0)
k[x], deg g(x)
= {0}.
2,
2}.
3.4. P3.4.1.
P–
1) FP = k
P=t
2)
1
F / k, t –
P.
(2.5)
P=
3)
.
z
k
P=k
t
P.
P.
:
z = z0 = 0 + z1 t,
z1 = 1 + z2 t,
…………………
25
zn =
i
k, zi
P.
+ zn +1 t,
n
i
i
t (0
i
n)
,
n
+ zn +1 t
n +1
n
(mod t
n +1
z=
+
1t
+…+
nt
z
+
1t
+…+
nt
(3.6)
,
sn =
+
z – sn
1t
P
,
+…+
nt
n +1
)
(3.7)
n
.
| z – sn |P
(sn)
z
1
c
n 1
.
P
.
,
P
z=
ti
i
(3.8)
i 0
P
3.4.2.
u
z–
P
, n
.
F,
.
u
0,
n
(3.6)
t ,
z=
i
z = ut
n
-
:
ti .
(3.9)
i n
(
(3.8))
t.
,
P0,
n
u
z
n = vP (z)
P,
-
.
3.4.3.
,
.
1, t –
(2.4),
,
,
z
P–
F/k
-
,
F
z=
i
ti ,
(3.10)
i n
i
FP (
,
FP)
3.4.4.
n
2.3.7,
0.
n = vP (z)
k
,
dz
dt
(3.10)
,
P,
0.
)
i
t i 1.
(3.11)
i n
,
n =
z
(
i
i
t(P) = 0,
1 dnz
( P)
n ! dt n
(3.12)
26
3.5.
3.5.1.
.
z
P.
F/k–
P
F
, P–
Res P, t (z) = TrP (
TrP : FP
k–
, t–
t
,
1
1)
k,
–
(3.10).
P–
-
,
Res P, t (z) =
3.5.2.
x, y
F.
F,
1.
t, s –
,
P.
= x dt = y ds
-
Res P, t (x) = Res P, s (y).
3.5.3.
.
3.5.2
Res P ( ) = Res P, t (x)
P.
3.5.4.
1)
2)
3)
4)
5)
(
).
,
F,
k, z
F
Res P ( + ) = Res P ( ) + Res P ( ),
Res P ( ) = Res P ( ),
v P( ) 0
Res P ( ) = 0,
Res P (dz) = 0,
Res P (dz / z) = vP (z) deg P,
z 0.
3.5.5.
,
(
).
F,
0,
Res P ( ) = 0
P,
,
,
Res P ( ) = 0.
P
3.5.6.
. 1)
, z F
F/k–
vP (z) > 0.
1
1 z
y
P
,
, P–
(1 z ... z n ) =
-
zn 1
n +1
= yt ,
1 z
,
1
zi .
=
1 z
2)
k(x) –
= g(x) / h(x) –
k[T].
, t–
i 0
, P–
k(x), vP (z)
z
0,
z = g1(t) / h1(t)
n
c0 + c1 t +…+ cn t (mod t
c0, c1, ...,cn
g1 (t)
t, z =
g1, h1
n +1
)
k,
n
h1 (t)(c0 + c1 t +…+ cn t ) (mod t
n +1
),
27
.
3)
,
2
, z = (x + 1) / (x + x + 1)
t = 1/x –
2
t +t
2 (x),
2
, x = 1/t
P –
2
n
(t + t + 1)(c0 + c1 t +…+ cn t ) (mod t
:
c0
0,
c0
c1
c0
c1 c2
1,
1,
........................
ci ci 1 ci 2 , 3 i
(t 3 j
z=t+
j 1
vP (z) < 0
2 (x).
2
z = (t + t) / (t + t + 1).
.
t3 j 1) .
n.
n +1
).
28
4.
4.1.
*
4.1.1.
.
n = q – 1,
–
k
2
={ ,
q
4.1.2.
q,
f
q [T]
deg f
k
k – 1}.
k 1
1, T,…, T
q
.
Lk
2
(f) = (f( ), f(
: Lk
f
= 1}.
{1,…, n}
Lk = {f
Lk
n
,…,
Ker ,
. (f) = 0,
,
Ker = {0} ,
,
4.1.3.
.
4.1.4.
.
1) d C = n + 1 – k,
2)
. . C
,
q
f
)).
,
n
–
n
),…, f(
,
.
q.
deg f < k
n,
f = 0.
-
.
[n, k]-
C–
C = (Lk)
.
–
n
k
q.
-
:
.
C
1
G=
...
k 1
1)
x
f
, dC
= n – k + 1.
2)
4.1.5.
C, x
q
.
...
2
...
n
...
...
...
2( k 1)
.
n ( k 1)
...
(f)
x=
1
f
w(x) = n – S .
Lk, f
S
0.
deg f
n – k + 1.
(1), (T),…, (T
,
k 1
)
k – 1,
w(x)
n–k+1
n – k + 1,
,
dC =
C.
–
-
n = q – 1.
CL (D, G)
4.2.1.
F/ q –
P1,…, Pn –
D = P1 +…+ Pn.
S–
dC
,
q,
4.2. AG-
0,
1
:
g;
F/
q.
29
G–
F/
4.2.2.
supp G
x
q,
L(G)
supp D =
.
,
supp G
i
{1,…, n}
x
supp D =
vPi ( D) = 0,
vPi ( x)
FPi =
x(Pi )
Pi
.
q,
deg Pi = 1.
(x) = (x(P1),…, x(Pn)).
n
q
: L(G)
,
,
,
q.
4.2.3.
.
AG-
),
D
–
G,
CL (D, G) = (L(G)).
4.2.4.
. CL (D, G)
[n, k, d]-
:
k = dim G – dim(G – D),
d
n – deg G.
: L(G)
CL (D, G),
4.2.2,
0 x L(G) x Ker
(x) = 0.
,
,
,
(x)
G
vP (x)
vP (G)
P x(P1) = … = x(Pn) = 0.
:
P {P1,…, Pn}
vP (x)
vP (G) + vP (D) = vP (G – D),
vP (D) = 0
,
1 i n
vPi ( x) 1 = vPi (G ) + vPi ( D) = vPi (G D ) ,
vPi (G ) = 0, vPi ( D) = 1.
, x
(x)
,
Ker
(G – D) ,
x L(G – D),
,
. Ker
.
-
x L(G – D).
= L(G – D).
-
,
k = dim CL (D, G) = dim L(G) – dim L(G – D) = dim G – dim(G – D).
,
CL (D, G)
d,
.
{0},
w( (x)) = d.
n–d
,
L(G),
x
D
x.
Pi
,
P
1
vPi ( Pd
x(Pi )
1
i
d
vP (x)
x(Pi ) = 0
vP (G)
d+1
n.
P.
x
L(G)
Pi
:
{P1,…, Pn}
vP (x)
vP (G) = vP (G) + vP (Pd +1 +… + Pn) = vP (G – (Pd +1 +… + Pn)), vP (Pd +1 +… + Pn) = 0,
i d
vPi ( x) = 0 = vPi (G ) + vPi ( Pd 1 ... Pn ) = vPi (G ( Pd 1 ... Pn )) ,
vPi (G ) = 0
1
d+1
... Pn ) = 0,
i
n
vPi (G ) = 0, vPi ( Pd
vPi ( x)
1
1=
vPi (G ) + vPi ( Pd
1
x
0.
... Pn ) = vPi (G ( Pd
1
... Pn )) ,
... Pn ) = 1.
(x)
x
i
2.6.3 3)
(G – (Pd +1 + … + Pn)) ,
L(G – (Pd +1 +… + Pn)),
,
-
30
,
, d
deg(G – (Pd +1 +… + Pn) = deg G – n + d
n – deg G.
4.2.5.
.
deg G < n,
: L(G)
CL (D, G)
-
:
1) CL (D, G)
[n, k, d]-
,
,
k = dim G
deg G + 1 – g,
d
n – deg G,
:
k+d
2)
3)
,
, 2g – 2 < deg G < n,
x1,…, xk –
L(G),
k = deg G + 1 – g.
x1 ( P1 )
x2 ( P1 )
M=
n + 1 – g.
x1 ( P2 ) ... x1 ( Pn )
x2 ( P2 ) ... x2 ( Pn )
...
...
...
...
xk ( P1 ) xk ( P2 ) ... xk ( Pn )
CL (D, G).
deg(G – D) = deg G – n < 0,
–
.
–
k+d
n+1–g
q
= L(G – D) = {0} ,
4.2.4
,
-
.
4.2.6.
deg G < n
F/
Ker
–
4.2.5
k+d
,
,
n + 1.
g=0 (
,
F=
q (x)
–
),
k + d = n + 1,
. AG-
CL (D, G)
.
d * = n – deg G
4.2.7.
dim G > 0
d * > 0.
D,
,
0 D
4.3. AG-
,
d = d*
D, deg D = deg G
dim(G – D ) > 0.
4.2.1.
vPi (G D ) = 1,
F (G
– D)
,
i
Res Pi ( )
( ) = (Res P1 ( ),..., Res Pn ( )) .
:
,
,
C (D, G)
4.3.1.
vPi ( )
CL (D, G).
,
F (G
q.
– D)
n
q
,
{1,…, n}
Pi.
31
4.3.2.
.
AG-
),
D
C (D, G) =
4.3.3.
. C (D, G)
(
F (G
– D)).
d
deg G – (2g – 2).
deg G > 2g – 2
k = i (G – D)
, 2g – 2 < deg G < n,
1)
:
C (D, G),
(G
–
D)
F
vPi ( )
( )
,
( )–
Res Pi ( ) = 0
-
{P1,..., Pn}
vQ (G – D) = vQ (G) ,
4.2.4
k = dim C (D, G) = dim
d
4.3.1,
Q
1.
,
Ker
2)
Pi1 ,..., Pin
n + g – 1 – deg G.
k = n + g – 1 – deg G.
vQ ( )
n
:
F (G – D)
.
1 i
–
[n, k , d ]-
k = i (G – D) – i (G)
,
(
G,
G,
F (G
. Ker
=
– D) – dim
,
F (G).
F (G)
,
= i (G – D) – i (G).
C (D, G).
d
i {i1 ,..., in d } .
n–d
4.2.4
,
n d
F
(G ( D
j 1
Pi j )) ,
0.
3.3.10 3)
n d
deg(G ( D
j 1
. d
3)
Pi j )) = deg G – n + n – d = deg G – d
deg G – (2g – 2).
deg G > 2g – 2,
,
2g – 2,
–
i (G) = 0 ,
-
k = i (G – D) = dim(G – D) – deg(G – D) – 1 + g =
= dim(G – D) + n + g – 1 – deg G
4)
,
, deg G < n,
k = n + g – 1 – deg G.
4.3.4.
n + g – 1 – deg G.
deg(G – D) = deg G – n < 0
,
, dim(G – D) = 0,
d * = deg G – (2g – 2)
.
-
C (D, G).
4.4.
4.4.1.
,
AG.
vP ( )
P–
1, x –
F/
F,
,
vP (x)
Res P (x ) = x(P) Res P ( ).
0.
q
1,
–
,
32
vP (x)
0,
x
x(P) = , vP (y) 1.
vP ( ) = vP (z)
1,
P
=
P
q
,
, x=
t–
+ y,
P
P,
q.
= z dt
vP (y ) = vP (y z) = vP (y) + vP (z)
,
y
z
F.
,
Res P (
4.4.2.
.
) = Res P ( ) + Res P (
CL (D, G)
) = x(P) Res P ( ).
C (D, G)
, . .
C (D, G) = CL (D, G) .
1)
,
–
,
P1, ..., Pn,
vP (
,
C (D, G)
) = vP (x) + vP ( )
, Res P (
) = 0.
F (G
– D)
x
vPi (G ) = 0.
vPi ( x )
n
( ) =
i 1
2)
P
{1,..., n}
Res Pi ( x ) = x( Pi ) Res Pi ( ) .
(x);
L(G).
vP (G) + vP (G – D) = vP (G) + vP (G) = 0
vPi (G D ) = 1,
vPi ( )
4.4.1
i
CL (D, G) .
:
n
x( Pi ) Res Pi ( ) =
i 1
Res Pi ( x ) =
4.2.4, 4.3.3
–
Res P ( x ) = 0.
P
3.3.9
dim CL (D, G) = n – (dim G – dim(G – D)) =
= n – (deg G + 1 – g + dim(W – D) – deg(G – D) – 1 + g – dim(W – G + D)) =
= n – (deg G + i (D) – deg G + n – i (G – D)) = i (G – D) – i (D) = dim C (D, G).
,
C (D, G) = CL (D, G) .
4.4.3.
2.4.1
vPi (t ) = 1
. t–
y
F,
i: 1 i
:
,
y(Pi ) = 1
1
i
,
.
, vPi ( y ) = 0
Pi
–
,
-
y
vPi ( ) = 1, Res Pi ( ) = 1
4.4.4.
F,
n,
P1,..., Pn.
1 i n.
= y d t / t.
n.
t
1
i
n.
,
(4.1)
(4.1).
C (D, G) = CL (D, D – G + ( )).
H = D – G + ( ).
,
supp H
supp D
1
i
n
vPi ( H ) = vPi ( D) + vPi ( ) = 0.
.
,
CL (D, H)
3.3.8
: L(( ) – (G – D))
F (G
– D), x
x .
.
33
x
L(H) = L(( ) – (G – D))
1 i
n
vPi ( H ) = 0.
vPi ( x)
4.4.1
Res Pi ( x ) = x( Pi ) Res Pi ( ) = x(Pi ).
,
(x )
(x)
C (D, G), x
4.5.
CL (D, H),
x L(H),
.
, CL (D, H) = C (D, G).
F (G – D)
AG-
4.5.1.
4.2.1. AG-
G
,
q (x)
q + 1,
x
P
CL (D, G),
.
,
q+1
q (x)
P
x–
q.
4.5.2.
.
C = CL (D, G) –
n 1, k
d.
:
1) n q + 1.
2) k = 0
deg G < 0; k = n
deg G > n – 2.
3)
0 deg G n – 2
AG-
k = 1 + deg G
-
q
d = n – deg G,
, C
.
4) C
AG-
.
1)
4.5.1.
2), 3)
deg G < 0,
dim G = 0.
G – D < G,
dim(G – D) = 0.
4.2.4 k = 0.
0 deg G n – 2,
deg(G – D) = deg G – n
,
D
CL (D, G) ,
-
n
, dim(G – D) = 0.
dim G = deg G + 1
deg G
L(G – D)
L(G) ,
,
2<0
0 > 2 = 2g – 2,
–
k = dim G – dim(G – D) = deg G + 1.
4.2.6
d = n + 1 – k = n – deg G.
, dim G = deg G + 1.
,
,
deg(G – D) = deg G – n
,
deg G
n–1
1 > 2g – 2,
dim(G – D) = deg(G – D) + 1 = deg G – n + 1.
,
k = dim G – dim(G – D) = deg G + 1 – deg G + n – 1 = n.
:
deg G < 0
deg G
n–2
k=0
1
deg G > n – 2
n – 1;
1 + deg G = k
k=n
n – 1;
1,
.
4)
4.4.4.
4.5.3.
.
C = CL (D, G) –
AG-
q
n, k, d.
0,
34
1)
n
q,
1,...,
v1,..., vn
q,
,
C = {(v1 f( 1),…, vn f(
C
n))
n 1}
1)
deg f
v2
2 v2
...
...
vn
n vn
2
1 v1
2
2 v2
...
2
n vn
...
...
...
...
k 1
2 v2
v1,..., vn
F=
(4.2)
.
(4.3)
k 1
n vn
...
v1
1v1
v2
2 v2
2
1 v1
2
2 v2
...
...
...
...
...
...
k 1
2 v2
...
vn
1vn
...
...
1
1
n
2
v
n 1 n 1
k 1
n 1 vn 1
0 ,
(4.4)
1
q \ {0}.
1
q (x).
1,
k – 1}
:
k 1
1 v1
{ 1,...,
q [x],
C
M=
q=
,
v1
1v1
k 1
1 v1
n = q + 1,
-
q
:
M=
2)
f
n
D = P1 +...+ Pn.
supp D.
n
Q
q,
P
P
, Q = P1.
1,
-
deg(Q – P) = 0 > 2 = 2g – 2,
–
dim(Q – P) = deg(Q – P) + 1 – g = 1
,
, Q – P–
1 . (z) = P
,
z:
P,
P,
P ,
2 . (z) = P
3 . (z) = P
,
deg G
n – 1,
z = (x
q
q
) / (x
z = 1 / (x
z=x
.
q
z–
P=P .
. Q – P = (z)
z
)=1+(
,
,
deg G < 0,
n
q
C=
q.
-
);
);
q
k=n
) / (x
F, z
F=
k=0
q (z)
.
(z) = P.
C = {0}.
,
-
4.5.2
,
deg G = k – 1.
deg((k – 1)P – G) = 0 > 2 = 2g – 2,
,
–
, (k – 1)P – G = (u),
t
z u,
L(G).
t
dim((k – 1)P – G) = 1
0 u F.
,
t
t
,
, (k – 1)P – G –
k – 1,
k–1
(z u) = t (z) + (u) = t Q – t P + (k – 1)P
G = t Q + (k – 1 – t)P
G
G.
35
t
,
u, zu, ..., z
k 1
zu
L(G).
u
0 > 2 = 2g – 2,
–
.
0u
q [z]
+
deg f
1 zu
+…+
,
k 1z
k – 1.
k 1
u = u(
i=
z(Pi ), vi = u(Pi )
1
i
,
,
, vi
= z(P ) = z( ) =
0.
,
+
1z
+…+
k 1z
k 1
,
,
-
) = u f (z),
q [z],
deg f
k – 1}.
n.
vPi (u )
Pi
dim G = deg G + 1 = k
L(G)
:
L(G) = {u f (z) f
u
,
q.
deg G = k – 1
f(z)
z
q
G ) = 0,
vPi ((k 1) P
Pi = P
,
q
.
i
1
(
i
z),
z(Pi ) =
n
(u f (z))(Pi ) = u(Pi ) f (z)(Pi ) = vi f (z(Pi )) = vi f ( i ).
(4.2).
deg G < n,
0 j k – 1,
(4.3).
uz
2)
P1 – Pn,
Pn = P
,
1),
4.2.5
j
,
L(G),
j
1 ,
, vn
j
n)
C,
,
n
z
q
z.
(v1
q.
F,
,
-
F=
q (z)
1)
(k – 1)P – G = (u )
1
i
F
u
n–1=q
q=
i
{ 1,...,
= z(Pi )
, vi = u (Pi )
n 1}.
v (u z
(u z
k 1
u , z u ,..., z
q,
)(P ) =
k 1
k 1
u
1),
q \ {0}
q \ {0}.
j
1
u=
1
L(G), vi = u(Pi ) =
i: 0
1
i
,
-
k 1
-
n – 1.
) = v (u ) + (k – 1)v (z) = k – 1 – (k – 1) = 0,
{u, z u,..., z
–
L(G).
vi
q
k 1
u.
u}
\ {0}
1
i
n–1
(u z
)(P ) = 1.
k–2
j
v (u z ) = v (u ) + jv (z) = k – 1 – j > 0,
j
(u z )(P ) = 0.
j
k –1
1 i
n–1
j
j
(u z )(Pi ) = u(Pi )(z(Pi )) = vi
,
j
i
.
:
j
j
k–2
j=k–1
j
((u z )(P1),…, (u z )(Pn)) = (vi
((u z
k 1
)(P1),…, (u z
k 1
)(Pn) = (v1
j
1,
k 1
1 ,
, vn
, vn
j
1 n 1 , 0)
;
k 1
1 n 1 ,1)
.
36
(4.4).
4.5.4.
F=
x
q (x)
–
,
1,...,
–
n
q,
Pi –
i,
n
t (x) =
(x
i)
.
i 1
,
y(Pi) = 1
F,
t(x) –
1 i
P1,..., Pn.
n.
y–
4.4.3
= y
dt
dx
= y ( x )t ( x )
t
t ( x)
:
vPi ( ) = 1,
Re s Pi ( ) = 1
1
i
n.
3.3.12
( ) = (y) + (t (x)) – (t (x)) – 2P .
4.6.
AG-
4.6.1.
AG-
C = C (D, G),
supp D
4.6.2.
0, G1 –
1)
G1
.
t
,
supp G =
, D = P1 +...+ Pn
.
d * = deg G – (2g – 2) –
F / q.
:
supp G1
C , t–
supp D =
,
deg G1 < deg G – (2g – 2) – t,
(4.5)
dim G1 > t,
(d * – 1) / 2 ,
,
2)
0 t (d * – 1 – g) / 2,
(4.5).
t
C
t
.
G1,
,
,
.
,
t
-
,
z
t
(d * – 1 – g) / 2,
F
,
vP1 ( z ) =
g–t
vPi ( z ) = 0
2
i
n,
G1 = (g + t)P1 + (z).
4.6.3.
n
q
,
f
L(G)
(4.5)
.
b = (b1,..., bn)
37
n
[b; f] = b; (f) =
bv f ( Pv ) ,
v 1
(f) = (f(P1), ..., f(Pn)),
n
q
.
L(G)
q,
(b, f)
[b; f]
C = CL (D, G) ,
n
q
C = {b
4.6.4.
:
c = (c1,..., cn) –
, c
e = (e1,..., en) –
, e
[b; f] = 0
f
,
w(e) t.
n
q
;
n
q
, a
v
.
n,
,
I = {v
–
(4.6)
C .
a = (a1,..., an) = c + e –
ev, 1
L(G)}
{1,..., n} ev 0}
.
{f 1, ..., f } L(G1);
{g1, ..., gk} L(G – G1);
{h 1, ..., hm} L(G);
,
1
1
k
(f g ) = (f ) + (g )
,
, f g
4.6.5.
–G1 – (G – G1) = –G
L(G).
.
[a; f g ]x = 0,
1
k.
(4.7)
1
x, 1
( 1, ..., ).
.
(4.7)
f=
-
f ,
(4.8)
1
f
L(G1)
f (Pv) = 0
, v
I.
.
4.6.6.
f=
.
f
1
4.6.7.
.
N(f) = {v
,
4.6.5 I
N(f)).
{1,..., n} f (Pv) = 0}.
:
38
h ( P ) z = [a; h ], 1
m
(4.9)
N(f )
zv, v
,
,
1)
f(Pv) = 0
supp G1
supp D =
N(f).
(4.9)
(ev) v
v
N(f),
N(f).
1
vPv ( f )
v,
-
,
f
Pv ) ,
L(G1
v N( f )
,
Pv ) = deg G1
deg(G1
N(f)
0,
v N(f )
.
N(f)
2)
deg G1.
,
h
(ev) v
N(f),
ev –
,
(4.9).
L(G),
n
[a; h ] = [c + e; h ] = [e; h ] =
h ( Pv )ev .
h ( Pv )ev =
v 1
v N(f )
.
3)
.
(4.9).
,
n
q
b = (b1,..., bn)
,
[b; h ] =
bv = 0
(bv) v
N(f)
–
v
N(f).
h ( Pv )bv = [a; h ] = [e; h ]
v N( f )
1
m,
[b – e; h ] = 0
b–e
C .
b–e
w(b – e)
bv – ev = 0
v
1
m.
L(G),
:
deg G1 < deg G – (2g – 2) = d *,
N(f)
N(f).
d * > w(b – e),
dC
4.6.8.
1 .
{h1,..., hm} –
b – e = 0,
. b = e.
.
(
1,
...,
)
(4.7).
a.
,
(4.7)
2 .
f=
f .
1
3 .
N(f) = {v
f(Pv) =
{1,..., n} f(Pv) = 0}.
f (P ) .
1
4 .
,
(ev) v
N(f)
(4.9).
(4.9)
a.
-
39
5 .
e = (e1, ..., en),
ev = 0
v
N(f).
,
6 .
w(e)
t.
a.
c = a – e.
[c; h ] = 0
1
,
m.
a.
,
c
C
a
-
c.
4.6.9.
(d * – 1 – g) / 2,
,
(d * – 1) / 2.
-
,
(d * – 1 – g) / 2
.
,
(d * – 1) / 2.
F
,
g =0
,
,
.
40
5.
5.1.
k
k(x).
–
-
,
.
.
5.1.1.
.
F/k
.
F /k
-
F / k,
F
F
k
k.
F
(
F
),
F /F
(
.
,
5.1.2.
F / k, P
F = k.
F /k
F / k , vP
vP
F,
.
e,
,
1
e
vP
-
F
F / k.
P=
F,
P
,
P
,
F/k
F/k
P.
P
P
5.1.3.
P
F ',
.
P
,
,
,
P
P
,
P
P.
,
P
P
,
P
F ',
F ',
;
P P,
;
-
e(P P);
e(P P);
,
F / F,
P,
,
P P:
char k
char k
P
P P
P
e
F/ k
F / F,
,
,
P P.
,
. 5.1.2
e(P P).
e(P P) = 1;
e(P P) > 1;
,
e(P P) > 1
,
e(P P) > 1
F / k.
vP F = evP .
P,
P
F /k
P;
F / F,
P,
F,
P
P
P
P
P=P
,
P,
)
)
k
.
,
-
k /k
k
k
,
-
41
F / F,
,
P P
,
-
P;
F / F,
P P
P
e(P P) = [F : F].
F /F
:
,
,
,
,
P
,
5.1.2
, FP =
P
P
F / F.
F
F / F.
F
P
5.1.4.
P
F,
F / F.
P
F'
/P
F,
j:
P.
P
P´
P
P,
-
FP ,
j : FP
:
j
FP
FP
j
P
P=P
FP
F=P
F
j ( FP ) .
P
=P
FP
P:
P
P,
,
j
j ( FP ) ,
,
FP
,
FP .
FP
P
P
2.3.3
z
P
(z) =
P
(z) = z(P).
5.1.4.
,
FP / FP
,
FP .
P
P
z(P ) =
5.1.5.
:
,
-
k /k
.
FP
FP
k
k
f(P P) = [ FP : FP ]
P
P.
f(P P) deg P = deg P [k : k].
5.1.6.
F /k ,
.
F /k
F / k, P1, P2,…, Pr
P.
:
r
e( P i | P) f ( P i | P ) [ F : F ] .
i 1
-
42
5.1.7.
.
P
Con F
F /k ,
F
/ F (P)
=
e( P | P ) P .
P |P
D
DivF :
Con F
/ F (D)
=
vP ( D ) Con F / F ( P ) ,
P
Con F
/F:
DivF
DivF
.
(x)
.
x
F
F
F, x
0, (x) –
x
DivF
[F : F ]
deg D .
[k : k ]
deg(Con F / F ( D))
5.1.8.
D
x
DivF ,
DivF ,
F
(x) = Con F
/ F ((x)
F
)
x.
5.1.9.
, (T) =
(
nT
n
+
).
n 1T
n 1
P
1) vP (
2) vP (
n)
= 0, vP ( i )
n) = 0, vP ( i )
+…+
F,
1T
+
–
( 0) > 0 (1 i n – 1)
0 (1 i n – 1), vP ( 0) < 0
F[T].
P
P
F
,
,
(n, vP ( 0)) = 1;
(n, vP ( 0)) = 1.
F = F(y),
,
e(P P) = n = [F : F],
P
F.
:
i
,
(T)
.
F/k –
y–
(T),
f(P P) = 1,
F / F.
5.1.10.
.
v (f (x)) = d < 0.
1)
n
d
2)
p = char k > 0
F = k(x) –
, f (x) –
n
,
p
k[x]
(T) = T – f (x)
p
(T) = T – T – f (x)
d,
d > 0.
k(x).
k(x).
5.2.
5.2.1.
1)
P
.
F / k,
P
=
P
F /k
F/k
F .
P
,
P |P
2)
u1,…, un
F
F,
,
n
P
=
P
ui .
i 1
F /F
P.
n, P –
43
3)
,
z1,…, zn
.
5.2.2.
F = FP –
F
F
F/k –
P
, P–
.
F,
,
:
P;
a = a(P) –
a
(T) =
F.
P
i
ciT
ci
P,
i
ciT i
(T ) =
F [T ] .
i
,
-
F [T ]
(T) =
(T )
P [T],
deg (T) = deg (T).
P
F/k
F /k .
5.2.3.
(
F / k.
P
).
) F = F(y),
)
(T) –
)
(T ) =
F /k
y–
F/k
n,
F .
P
F
y
P [T].
r
i (T )
(T )
i
i
F [T ] .
i 1
)
i
–
P [T],
i (T )
=
i (T)
deg
i (T)
= deg i (T)
1
i
P1,…, Pr
F /k ,
r.
P,
,
:
1)
i ( y)
Pi
2) f ( Pi | P )
,
deg
1
i (T )
i
r.
,
)
i
:
=1
) 1, y,…, y
1
n 1
i
r;
–
F /F
P1,…, Pr,
r;
r
1)
i (y)
Pi,
2) e(Pi P) =
1
i
i
1
i
r
P;
P
,
,
r
Con F
/ F (P) =
i Pi
;
i 1
3)
FPi =
Pi
F [T ] / ( i (T ))
/ Pi
f(Pi P) = deg i (T)
5.2.4.
.
:
n
n 1
1) (T) = T + f n 1 (t)T + … + f 0 (t) –
2) F = k(t, y),
y
1
i
,
,
r.
k(t);
(y) = 0;
44
3)
k,
j,
fj ( )
.
j: 0 j
[T],
n – 1.
,
f j (t)
-
F / k,
-
.
, y–
f j (t ) = f j (t)(P ) = f j ( )
j
n – 1,
n 1
n
(T ) = T + f n 1 ( )T
+ ... + f 0 ( )
k[T];
r
4)
(T ) =
(T )
i (T )
,
i 1
k[T].
i
,
i (T )
i (T)
=
1
,
i
r
r.
P1,…, Pr
P
1) t –
Pi,
2) i (y) Pi
3) e(Pi P ) = 1
P
1
i
Pi
1
,
r;
,
) = e(Pi P ) v (t – ) = 1,
vPi (t
. t–
4) f (Pi P ) = deg
i
r;
i (T)
1
Pi
r;
i
deg i (T) = 1,
f (P1 P ) = 1,
1
i
r;
,
i
{1,…, r},
, deg
1 (T)
=1
-
deg P1 [k : k] = f (P1 P ) deg P = 1
k
F)
:
, k–
5) [k : k] = 1 ,
6) deg Pi = f (Pi P ) = deg i (T)
r = n,
,
.
F;
1
i
r.
(T )
T– ,
( ) = 0,
P
F / k,
7) t –
P,
8) y –
P,
9) deg P , = 1.
k,
P,
F / k,
,
P.
k,
:
t(P , ) = ;
y(P , ) = ;
5.3.
5.3.1.
F /k
P
F / k.
F
d(P
P
F
,
,
P,
P
P),
P
Diff(F / F) =
d ( P | P) P
P P |P
P,
45
F /k ,
F / F,
-
.
.
5.3.2.
).
P–
F / k, P
F /k ,
P.
) d(P P) e(P P) – 1,
) d(P P) = e(P P) – 1
,
,
char k = 0.
5.3.3.
P , (T) –
,
.
P
char k
e(P P).
P
,
-
, t–
t
F,
d(P P) = vP ( (t)).
5.3.4.
.
F = F(y),
y
P,
1) d(Pi P)
y–
F
P,
vPi ( ( y ))
1
i
r.
2) d(Pi P) = vPi ( ( y ))
1
i
r
3)
F /F
1 i
vPi ( ( y )) = 0
P
F ,
P
(T) –
P1,..., Pr –
F /k ,
,
1, y,..., y
n 1
-
P.
r,
d(Pi P) = 0
,
,
e(Pi P) = 1,
F / F.
5.3.5.
1)
5.3.1
P P
P P
:
Diff(F F)
,
2) P P
3) P P
d(P P) = e(P P) – 1;
d(P P) e(P P).
,
P
,
(
).
F / k ).
F/k (
2g
,
2=
,
,
-
,
5.3.1, g (
:
, x–
,
F/k:
g
g=1+
5.3.8.
k
-
[F : F ]
(2 g 2) + deg(Diff(F / F)).
[k : k ]
, k(x) –
F,
,
=k
1
deg(Diff ( F / k ( x )))
2
(
).
F / k, k =
-
[F : k(x)].
g
F = k(x, y)
:
g
5.3.9.
F,
F / F.
5.3.6.
g)
5.3.7.
P.
.
([F : k(x)] – 1)([F : k(y)] – 1).
F/k–
(z dt)
, t–
:
, z
F.
46
(z dt) = (z) – 2(t) + Diff(F / k(t)),
(t)
5.3.10.
F / k.
.
F /F
Aut(F / F),
:F
x
F.
,
F ,
F / k,
F /k
,
(x) = x
Aut(F / F) = [F : F].
5.3.11.
.
F /k
F /k ,
F / k, P –
P.
i, j
F / k, P1,..., Pr –
{1,..., r}
:
1) e(P) = e(Pi P) = e(Pj P);
2) f (P) = f (Pi P) = f (Pj P);
3) d(P) = d(Pi P) = d(Pj P);
,
,
e(P) f (P) r = [F : F].
5.3.12.
Aut(F / F)
.
F /F
,
-
.
5.4.
5.4.1.
.
F /k
F = F k = F(k )
,
5.4.2.
F /F
1) k
2)
.
F/k
F
k.
F / k.
F /k
,
F;
k
t–
F,
t
k,
-
[F : k (t)] = [F : k(t)];
3)
t–
F/k
F = k(t, y)
y
F / k , F = k (t, y)
k (t),
4)
,
k(t);
F /F
P
,
. e(P P) = 1
P,
Diff(F / F) = 0.
5)
6)
F /k
g,
D
DivF
deg(Con F
7)
D
DivF
F / k.
:
/ F (D))
:
= deg D.
y
P
F,
F
t–
P
F
-
,
-
47
dim(Con F
8)
W–
/ F (D))
= dim D.
F / k,
Con F
/ F (W)
–
-
F /k .
9)
FP
FP
P
k
-
F.
P=P
k /k–
F /F
10)
FP k
,
P
k
k
,
F
[F : F] = [k : k].
5.4.3.
.
,
k=
q
–
, r–
F/
1) Fr / F –
2) q r
3) Fr /
4)
1, Fr = F
qr
q
.
qr
:
r;
Fr;
,
qr
P–
F/
m
q;
F/
q.
Con Fr / F ( P ) = P1 +…+ Pd,
d=
(m, r),
P1,..., Pd
deg Pi = m / d
1
i
d.
.
5.5.
5.5.1.
) k
F = k(x) –
,
k=
) E = k(x, y),
q
,
,
n
n q – 1).
–
n
y = f(x)
)
Q
k(x),
:
,
n
char k
k(x).
,
(n, vQ (f(x))) = 1
,
f (x) –
deg f (x),
5.5.2.
k[x],
n).
.
k–
E.
5.5.1
E/k
k(x).
5.5.3.
:
1) E / k(x) –
2)
3)
.
(y) = y,
n
(T) = T – f (x)
y
k(x).
P–
k(x),
5.5.1
E/k
n.
n
E / k(x)
.
k(x)
-
48
e(P) =
n
rP
d(P) =
rP =
,
n
– 1,
rP
(n, vP (f (x)) > 0,
E / k(x)
5.5.4.
f (x).
:
Diff(E / k(x)) =
P
P P |P
deg P =
P |P
=
[ E : k ( x)]
n
deg P =
deg P = rP deg P;
e( P )
n / rP
P
n
1
rP
P
n
1 rP deg P =
rP
=
deg P =
P |P
(n rP ) deg P ;
P
1
1
deg(Diff ( E / k ( x ))) = 1 – n +
2
2
g = 1 – [E : k(x)] +
,
, f (x)
p(x),
k(x)
E / k(x).
P ;
P |P
1
1
e( P ) deg P =
deg(ConE / k ( x ) ( P )) =
e( P ) P | P
e( P )
deg(Diff(E / k(x))) =
5.5.5.
n
1
rP
d (P)P =
k[x]
,
r =1
,
p(x).
f (x).
Pp(x)
P
(n rP ) deg P .
P
m,
n,
rp(x) = 1
-
:
g=1–n+
1
2
(n 1) deg P = (n 1)
P
= (n 1)
5.6.
1
2
deg P 1 =
P
1
(n 1)(m 1)
(m 1) 1 =
.
2
2
–
5.6.1.
E = k(x, y) –
)
.
,
y
k–
p > 0, k(x) –
p
y – y = f (x)
)
Q
–
k(x).
k(x),
f (x),
vQ (f (x))
k–
,
:
E
0 (mod p).
E/k–
k(x).
,
,
49
5.6.2.
.
5.6.1
–
E/k
-
:
1) E / k(x) –
p.
(y) = y + v,
v = 0, 1,…, p – 1.
p
(T) = T – T – f (x)
y
k(x).
P
k(x)
2)
3)
E / k(x)
-
k(x)
,
.
e(P) = p = [E : k(x)],
f (P) = 1.
f (x) = g(x) / h(x),
g(x)
h(x) –
k[x], h(x)
0,
h(x) = p1 ( x)m1 ... pr ( x )mr
h(x)
mi
1) Pi = Ppi ( x )
1
i
0 (mod p)
1 i
r.
-
k(x)
r,
d(Pi ) = (p – 1)(mi + 1).
2)
deg g(x) – deg h(x) > 0
p,
P
.
d(P ) = (p – 1)(deg g(x) – deg h(x) + 1).
P–
k(x), P
deg P = deg P.
Pi
E / k,
E / k,
5.6.3.
Pi
P,
i
{1,..., r, }.
:
Diff(E / k(x)) =
d (P )P =
d ( Pi ) Pi
i
=
( p 1)(deg g ( x ) deg h( x) 1) P =
( p 1)(mi 1) Pi
i
= ( p 1)
(mi 1) Pi
(deg g ( x) deg h( x) 1) P
,
i
deg(Diff(E / k(x))) = ( p 1)
(mi 1) deg Pi
(deg g ( x) deg h( x) 1) =
i
(mi 1)deg pi ( x) deg g ( x) deg h( x) 1) =
= ( p 1)(
i
= ( p 1)(
deg pi ( x) deg g ( x) deg h( x) 1) =
mi deg pi ( x )
i
i
= ( p 1)(deg g ( x)
deg pi ( x ) 1) ,
i
g=1–p+
p 1
deg g ( x)
2
5.6.4.
deg h(x).
deg pi ( x ) 1 =
i
p 1
deg g ( x)
2
1: m1 = ... = m r = 1, deg g(x) > deg h(x)
deg pi ( x) ,
deg h(x) =
:
i
g=
p 1
deg g ( x ) deg h( x) 1 .
2
deg pi ( x ) 1 .
i
p
deg g(x) –
50
5.6.5.
2: f (x) –
k[x]
m,
k(x)
p,
P .
-
:
deg(Diff(E / k(x))) = d(P ) = (p –1)(deg f (x) + 1),
g=1–p+
p 1
( p 1)(m 1)
deg f ( x ) 1 =
.
2
2
5.7.
*
5.7.1.
k–
k, F = k(x, y) –
q
y + y = f (x)
,
:
1) deg f = m > 0
2)
k–
5.7.2.
p;
q
T + T=0
F.
.
2)
, q=p,
k[x].
k.
5.7.1
p4.7.3.
1)
s
p > 0, k(x) –
,
F/k
k(x).
.
p
F / k(x)
n
( /p ) .
q
(T) = T + T – f(x)
y
k(x).
3)
F/k
q.
:
-
k(x)
-
k(x)
P .
F / k(x),
e(P ) = q = [F : k(x)],
,
f (P ) = 1,
,
P ,
d(P ) = (q – 1)(m + 1).
Q
F / k,
deg Q = 1.
5.7.4.
F / k(x)
Diff(F / k(x)) = (q – 1)(m + 1)Q .
F/k
g=1
1
1
(q 1)(m 1)
(q 1)(m 1) q =
deg(Diff ( F / k ( x))) [ F : k ( x)] = 1
.
2
2
2
5.7.5.
x
( x )k ( x ) = P ,
y.
(x) = ( x ) F = Con F / k(x) (P ) = e(P )Q = qQ .
, vQ ( x ) =
q.
,
vQ ( y )
vQ ( y q ) = qvQ ( y )
,
0.
,
vQ ( y q
y)
min{vQ ( y q ), vQ ( y )}
0.
-
51
,
,
vQ ( y q
vQ ( y ) < 0,
,
=Q
k(x)
y ) = vQ ( f ( x )) = e( P )vP ( f ( x)) = qm < 0.
P .
. Q
y.
Q
Q
F
Q .
P=
vQ (y) < 0,
q
vQ (y ) = qvQ (y) < vQ (y) < 0.
q
q
vQ (y + y) = min{vQ (y ), vQ (y)} = qvQ (y) < 0.
, vQ (f(x)) = e(P)vP (f (x)) 0.
,
,
y
,
, vQ ( y ) = m,
5.7.6.
,
(y) = mQ .
5.3.9
5.7.7.
P
P [T],
.
k(x),
P ,
F / k,
, d(P) = vQ (
F / k(x)
5.7.8.
1)
r
d(P)
-
vQ ( (y)) = vQ ( ) = 0
(y)) = 0.
P.
1, y, ..., y
-
Q
F
z,
,
, z
Q
,
z
Q F
Q Q
P .
k(x), P
q 1
L(rQ ).
Q
P
5.3.4
P,
0–
.
z L(rQ ).
k(x), P
,
P.
P
2q)Q =
y
Q
vQ (z)
, x
y ) = vQ ( f ( x )) = qm
(dx) = 2(x) + Diff(F / k(x)) =
= 2qQ + (q – 1)(m + 1)Q = ((q – 1)(m + 1)
= ((q – 1)(m – 1) – 2)Q = (2g – 2)Q .
,
0.
Q .
qvQ ( y ) = vQ ( y q
,
vQ (y)
,
Q
=
z
P .
P
QP
P
-
,
q 1
z=
zj yj ,
j 0
zj
P
k(x)
P
, zj
P ,
k[x],
. zj
,
P .
-
.
q 1
z=
aij xi y j ,
ai j
k.
(5.1)
j 0 i 0
2)
.
,
,
i
x y
j
j
q–1
-
52
vQ ( x i y j ) = i q – j m = i1 q – j1 m = vQ ( x i1 y j1 ) .
(i – i1)q = (j1 – j)m.
, i = i1.
,
–(q – 1)
j1 – j
q–1
q
,
i, j,
, iq + jm
i
,
x y
0}
r.
vQ ( z )
i
,
x y
j
r
L(rQ )
j
3)
(5.2)
i
,
(5.2)
(5.1),
iq – jm
,
j = j1
:
vQ ( z ) = min{ i q – j m ai j
,
m,
,
ai j
i, j.
L(rQ ).
vQ ( z )
0,
,
, z
0.
j
x y,
i
0,
k.
q–1
iq + jm
i
,
j
x y,
L(rQ )
5.7.9.
j
r,
(5.3)
(i, j)
(5.3),
-
k.
k.
,
k,
q
,
+
= f( ).
q
( + ) + ( + ) = f( )
k,
q
,
+
= 0,
q
q
T + T – f( ) =
j),
(T
j 1
j
–
k.
= 1,..., q
Pj
y ( Pj ) =
q
T + T – f( )
> 1.
k
P
F / k,
P,
j=
F,
P,
,
deg Pj = 1.
j
k[T]
k,
f (P ) > 1 ,
deg P > 1.
,
-
53
6.
k=
–
q
q
, F/
q
n
5.1.
–
g.
F/
An .
F / q,
,
N = q + 1.
,
0 -
q
,
A1
N = N(F).
r 1
.
,
Br ,
,
,
, F=
q (x)
r,
h
F/
An =
6.2.
h
(q n
q 1
.
F/
1 g
Z(t)
n > 2g – 2,
q
n 0
.
q.
1) .
An t n =
Z(t) = ZF (t) =
6.3.
–
t deg( D ) .
D 0
|t| < q
1
):
Z(t) =
L(t) = LF (t) –
F / q.
L (t )
,
(1 t )(1 qt )
2g
6.4.
.
1) a0 = 1;
g
2) a2g = q ;
3) a1 = N – (q + 1);
g i
4) a2g i = q ai
a1,..., ag.
,
L(t) = a0 + a1 t +…+ a2g t
0 i
6.5.
g,
2g
L-
[t],
:
L
1,...,
2g
–
-
,
L
,
:
2g
L(t) =
i t) .
(1
i 1
1,...,
i
6.6.
,
2g
g+i
=q
1
(
i
-
g.
).
1
i
2g
1/ 2
|
i
|=q .
.
6.7.
.
1
,
|t| < q ,
1
Z(t) =
P
F
1 t deg( P )
.
54
6.8.
1,...,
.
2g
Fr = F
–
F/
qr
,
L
Nr = N(Fr) –
Fr /
2g
r
LF (t)
,
, N=q+1–
r
Sr t r
1
(6.1)
i
i 1
Sr = Nr – (q + 1),
L (t )
=
L (t )
q.
.
qr
i 1
1)
F/
,
2g
r
i
Nr = q + 1 –
qr
q
:
,
r 1
2) a0 = 1
i ai = Si a 0 + Si 1 a1 +…+ S1 ai
6.9.
1
1
,
,
6.10.
g.
N1,..., Ng,
S1,..., Sg
g i
a 1,..., ag.
.
L(t)
i
a 2g i = q ai
(
-
i
,
g.
).
F/
q
,
L-
Fr /
qr
:
N – (q + 1)
6.11.
2gq
1/2
2gq
r/2
,
N = q + 1 + 2gq
1/2
,
,
(6.2)
.
,
q,
(
.
q
:
q q1/2
.
2
g
6.12.
.
,
g,
.
r
Nr – (q + 1)
).
,
q
,
-
(6.2):
N – (q + 1)
g 2q
1/2
.
6.13.
Br
6.1
K=
,
q
Nr =
r
F/
q.
d Bd .
d |r
r
Nd .
d
r Br =
d |r
2g
Sr =
r
i
,
1,...,
2g –
,
L
i 1
r
Nr = q + 1
Sr,
:
Br =
r
1
1
r d|r
r
(q d
d
Sd ) .
g>0
Br
:
qr
r
q
q
1
2g
q1/ 2
q1/ 2
q1/2 1
r
1
2 7g
qr / 2
.
r
LF (t).
55
7.
7.1.
7.1.1.
1)
2)
7.1.2.
)
.
F/k
A
DivF
.
.
char k
2,
x, y
x
F,
,
y
F = k(x, y),
2
f (x) –
k[x],
,
).
x
char k = 2,
(
y
.
,
2
y + y = f (x)
k[x],
2
deg f (x) = 3,
y +y=x+
7.1.3.
= k(x, y)
1
,
ax b
a, b
F–
k,
a
k(x), char k
y
:
,
y = f (x)
)
,
g = 1;
0.
2,
,
F=
F,
2
y = f (x)
f (x) –
k[x],
,
,
:
r
f (x) = c
pi ( x) ,
i 1
c
k.
Pi –
k(x).
P
)
)
)
k(x),
,
:
pi (x)
k
,
n=2
v (f (x)) = 3
, F / k(x) –
1) F / k(x) –
2)
i {1,..., r}
char k
2;
n = 2.
,
,
:
2
k.
vPi ( f ( x)) = 1,
rPi = 1 ,
,
e(Pi ) = 2 = [F : k(x)],
Pi
F / k,
F / k(x), f (Pi ) = 1;
Pi ,
deg Qi = f (Pi ) deg Pi = deg Pi .
, d(Pi ) = 1.
3)
v (f(x)) = 3,
rP = 1
,
,
e(P ) = 2 = [F : k(x)],
Qi –
1 i
r,
, 1
k;
56
P
F / k(x), f (P ) = 1.
F / k,
Q
P ,
deg Q = f (P ) deg P = 1;
4)
P–
, e(P) = 1,
F / k(x).
k(x),
, P1,..., Pr
,
, d(P ) = 1.
P1,..., Pr
P ,
vP (f(x)) = 0,
P
rP = 2
,
-
k(x),
Diff(F / k(x)) = Q1 +...+ Qr + Q .
5)
F/k
(n 1)(deg f ( x) 1)
(2 1)(3 1)
=
= 1.
2
2
g=
, F/k –
7.1.4.
.
F–
k(x), p = char k = 2,
y
,
F = k(x, y)
F,
2
y + y = f (x)
2
y +y=x+
k[x]
deg f (x) = 3
1
,
ax b
P
a, b
k, a
k(x), P
(7.1)
0.
(7.2)
ax + b
k(x) (
(7.2)).
,
(7.1) : v (f (x)) = 3 < 0
3
0 (mod 2);
(7.2) : v (x + 1 / (ax + b)) = 1 < 0
,
F / k(x)
,
:
1) F / k(x) –
2)
, .
1
0 (mod 2).
–
,
-
k.
k(x)
(7.1)
P ,
-
e(P ) = 2 = [F : k(x)].
f (P ) = 1.
Q
F / k,
P ,
deg Q = f (P ) deg P = 1.
,
d(P ) = (p – 1)(deg f (x) + 1) = 4
3)
P ,
Diff(F / k(x)) = 4Q .
k(x)
,
.
e(P ) = e(P ) = 2 = [F : k(x)].
f (P ) = f (P ) = 1.
Q
F / k,
P,
deg Q = f (P ) deg P = deg Q .
(7.2)
P
57
,
d(P ) = (p – 1)(deg(ax + b) + 1) = 2,
2
d(P ) = (p – 1)(deg(ax + bx + 1) – deg(ax + b) + 1) = 2,
Diff(F / k(x)) = 2Q + 2Q .
4)
F/k
g=
p
1
2
(deg(ax 2 bx 1) deg(ax b) 1) = 1.
, F/k –
.
7.1.5.
F/k
,
dim(0) = 1 = g
1
= y dx,
= dx,
k[x], deg f (x) = 3,
1
.
char k = 2, f (x) = x
ax b
1
z
deg(0) = 0 = 2g – 2.
char k 2,
char k = 2, f (x)
= (ax + b) dx,
-
k(x),
= z dx,
5.3.9
(7.3)
:
(z dx) = (z) – 2(x) + Diff(F / k(x)),
(z) = Con F / k(x) ((z)
k(x)
(x) = Con F / K ( x ) (( x )
);
k ( x)
) = Con F / k(x) (P ) = 2Q
2
(1):
y = f (x),
(f (x))
,
.
k(x)
= P1 +...+ Pr – 3P
,
2
2(y) = (y ) = (f (x)) = Con F / k(x) ((f (x))
k(x)
) = 2Q1 +…+ 2Qr – 6Q ,
,
1
(y ) = (y) = Q1 ... Qr + 3Q .
,
1
1
(y dx) = (y ) – 2(x) + Diff(F / k(x)) = Q1 … Qr + 3Q
4Q + Q1 +…+ Qr + Q = 0.
(2):
(dx) = (1) – 2(x) + Diff(F / k(x)) = 4Q + 4Q = 0.
(3):
(ax + b)
k(x)
=P
P
,
,
(ax + b) = Con F / k(x) ((ax + b)
k(x)
) = 2Q
2Q .
,
1
((ax + b) dx) = (ax + b) – 2(x) + Diff(F / k(x)) = 2Q + 2Q
,
,
( ) = 0.
4Q + 2Q + 2Q = 0.
58
7.2.
7.2.1.
N
F/
N
7.1.2
F=
2 (x,
2 + 1 + g[2 2 ] = 5.
y),
2
y +y=x+
2
y + y = f (x)
Q–
F/
2.
1
, b
x b
2 [x],
2,
(7.4)
deg(f (x)) = 3.
,
2
(7.5)
P
2 (x),
deg(P) f (P) = deg(Q) = 1
,
deg(P) = 1.
7.2.2.
)
3
Pb
(7.4)
1.
2 (x)
1,
,
P
,
= b + 1.
2
(T) = T + T + x +
,
P0, P1, P .
Qb
Q ,
1
x b
,
2
(T ) = T + T + b.
2
:
1) b = 0,
F/
(T ) = T(T + 1).
1,
2
2) b = 1
,
Pb+1.
(T ) = T + T + b
Q b+1
)
F/
(7.5)
P
,
1.
y
4
z = y + x.
.
3
1) f (x) = x + x + 1.
F/
Q ,
f (x) = x + bx + c,
2 (x, z)
2) f (x) = x .
Q0
,
, N = 3.
Q0
F/
,
2,
2
P0.
Q1
, N = 1.
(T ) = T + T = T(T + 1) ,
2
,
2
2
=0
-
,
P1.
F/
(
3
z + z = x + b1 x + c1).
.
Q0
2,
2
,
2
f (x) = x + x + bx + c,
3
(T ) = T + T + 1 –
(T ) = T + T + 1
3
b, c
2
, N = 2.
2
=0
2
2
-
-
Pb+1.
3
,
=1
1
2.
2,
2
F=
Qb
1
, N = 4.
2
,
Qb
2
1,
Q1
,
P0.
F/
2
=1
2,
2
2
(T ) = T + T + 1
P1.
,
-
59
3
3) f (x) = x + 1.
2
=0
(T ) = T + T + 1 –
,
Q0
F/
2,
2
2
=1
(T ) = T + T = T(T + 1),
1,
3
4) f (x) = x + x.
Q0 , Q0
4
.
P0.
Q1
2
P1.
,
2
Q1
=
F/
2
, N = 3.
=0
2
=1
Q1 , Q1
(T ) = T + T = T(T + 1)
F/
1,
2
,
P0
,
P1
-
, N = 5.
,
F/
F=
L
2 (x,
2
y),
LF (t).
N=5
2
3
y + y = x + x.
6.4
(7.6)
:
LF (t) = a0 + a1 t + a2 t
2
[t],
a 0 = 1,
a 1 = N – (q + 1) = 5 – (2 + 1) = 2,
g
a 2 = q = 2.
2
, LF (t) = 1 + 2t + 2t .
= 1+i
,
Fr = F
1
i.
2
,
LF (t) = (1 – t)(1 – t ).
= 1 – i,
8-
7.2.3.
1
2
t=
=
= exp
=
3 i
4
=
1
i
2
2.
r
2r
F/
Nr
r
r
Nr = 2 + 1 – (
r
r
)=2 +1–2 2
r/ 2
Re(
r
r
) = 2 + 1 – 2 2r /2 cos
3
r.
4
:
r
0 (mod 8)
r
= exp(0) = 1
r
1 (mod 8)
r
= exp
3 i
4
=
r
2 (mod 8)
r
= exp
3 i
2
= i
r
3 (mod 8)
r
= exp
9 i
2
=
4
2
r
4 (mod 8)
r
= exp(3 i) = 1
r
5 (mod 8)
r
= exp
15 i
2
=
4
2
r
6 (mod 8)
r
= exp
9 i
=i
2
r
7 (mod 8)
r
= exp
21 i
=
4
2
2
2
2
i
2
2
i
2
2
-
2
i
2
2
i
2
2
Re(
r
) = 1,
Re(
r
)= 2
Re(
r
) = 0,
Re(
r
)=2
Re(
r
) = 1,
Re(
r
)=2
Re(
r
) = 0,
Re(
r
)= 2
1/2
,
1/2
1/2
,
,
1/2
,
2.
60
:
2r 1,
,
r
2
r
Nr = 2
r
2
r
2
r
1 2 2
r/2
1 2 2
r /2
2, 6 (mod 8),
,
r
4 (mod 8),
,
r
0 (mod 8),
( r 1)/ 2
,
r 1, 7 (mod 8),
( r 1)/2
,
r
1 2
1 2
r
4 (mod 8)
Nr = q + 1 + 2gq
r
3, 5 (mod 8).
1 /2
.
0 (mod 8)
Nr = q + 1 – 2gq
1/2
Nr = q + 1 + g[2q
1 /2
.
r=1
].
61
8.
*
8.1.
*
8.1.1.
1)
q–
.
,
N:
q +1
q,
q2
.
X
q +1
–1
q2
.
2)
Tr :
q
q,
q2
.
q
q2 = q Ker Tr ,
8.1.2.
q2
H=
Im Tr =
-
q
q2
( x, y ) ,
x–
q2
H
x
q +1
+y
q +1
= 1,
q2
8.1.3.
p = char
q2
, n = q + 1, f(x) = x
n
y = f (x)
,
) p n
/ Ker Tr
Ker Tr = q.
.
H, y
+
2
n q – 1,
.
q
) f (x) = (q + 1)x = x
( x) ,
q2
q2
(8.1)
.
q +1
+ 1.
(8.1)
[ x] ,
n
q2
q
0,
.
.
f (x)
,
P–
-
f (x),
(n, vP (f (x))) = 1.
5.5.1
,
q2
8.2.
H/
P
2
–
H
H/
q2
( x) .
*
8.2.1.
q +1
q2
.
q2
q2
( x) ,
Q–
deg P f(P) = deg Q = 1,
1,
, P
.
P,
deg P = 1.
q2
.
q2
1,
-
( x)
-
62
q +1
(T) = T
+x
q +1
– 1.
:
q +1
1)
q2
= 1.
P –
,
f (x) = x
q +1
+ 1,
-
,
v (f (x)) = 1,
.
r =
(u, v (f (x))) = 1,
P
H/
H/
q2
,
P,
H/
q +1
(T ) = T
–1
q,
.
q
,...,
q2
…, Q
Q –
q +1
q +1
+
– 1.
q2
,
q +1
,
q
(T ) = (q + 1)T = T
q
–
(T )
.
H/
=1–
q +1
,
.
q2
,
.
,
,
1,
q2
(T )
q+1
P.
-
0,
q+1
[T ]
, q+1
,
q2
,
( x)] ,
.
q2
8.1.1
(T ) .
,
( x) , f (P ) = 1.
q2
1.
q2
q +1
q2
deg Q = f (P ) deg P = 1.
q+1
2)
e (P ) = n = q + 1 = [ H :
-
Q , 1,...
,
2
3
(q – (q + 1))(q + 1) = q – 2q – 1
H/
3)
=
q2
.
.
,
y
P .
z = y / x.
z
H=
q2
1+
( x, z )
(T) = T
1
x
q +1
q2
1
x
q 1
.
5.2.3
1
+1
x
(T ) = T
q 1
(T )
q +1
+ 1.
q+1
q2
,
[T ]
Q
= 1+
z
.
q 1
8.1.1
q +1
, 1,...,
Q
, q+1
H/
q2
deg Q
,
,
P ,
,i
=1
q+1
-
( x)
q2
1
i
f (P ) = 1
,
q + 1.
H/
q2
.
,
.
-
q+1
,
63
3
N=q +1
q2
H/
8.3.
,
,
8.3.1.
P1,..., Pq +1 –
( x) .
,
q2
,
f (x) = x
rPi = 1
deg Pi = 1
q2
1
.
i
H/
.
q +1
+1
q + 1,
,
v (f (x)) = (q + 1),
P
( x)
.
*
H/
e(P ) = 1
q2
5.5.4
H/
q2
P1,..., Pq +1
rP = q + 1
,
,
( x) .
q2
q
q(q 1)
1q 1
(( q 1) 1) deg Pi = q + (q 1) =
.
2i 1
2
2
g = 1 – (q + 1) +
2
2
2
3
(q + 1) + 2gq = q + 1 + q (q – 1) = q + 1 = N.
,
.
8.3.2.
1,...,
2g –
,
L
2
LH (t),
-
2g
2
N = (q + 1) + 2gq = (q + 1) –
,
i
i 1
2g
i
= 2gq.
|
i
|=q
1
i
2g.
i 1
2g
2g
2gq =
|
i
|
i 1
Re
i
= 2gq
i 1
2g
,
,
(|
i
| Re
i)
= 0,
Re
i
= |
i
| = q, Im
i
=0
,
,
i 1
i=
q
1
i
2g.
,
2g
LH (t) = (1 + qt) .
8.3.3.
,
H/
H=
q2
(u , v )
u
q +1
+v
q +1
q2
= 1.
q2
,
q
,
q
+ = 1,
q +1
= 1,
q
c=
.
q
+ c = 0,
q
q
q
+c =(
+ c) = 0,
q
q
q
q
)+ (
c + c= (
q
q
)=
q +1
( +
q
) = 1.
q2
,
-
64
1
x=
,
,
H=
u
v
,
u cv
.
u
v
y=
( x, y ) .
q2
(u + v)
q +1
q +1
x
q +1
=1
q
(u + v)
(y + y) =
q
q
= (u + v)( u + cv) + (u + v) ( u + cv) =
q
q +1
q
q
q
q
q
q
+ c)u v + (c +
)uv + ( c +
= ( + )u + (
q +1
q +1
= u + v = 1.
q
c)v
q +1
=
,
q
y +y=x
8.3.4.
deg f (x) = q + 1
q2
.
(8.2)
q
p.
Tr :
H=
q +1
q
q,
q2
T +T
+ .
q2
.
p
( x, y )
,
q2
( x) .
-
:
1)
q2
H/
e(P ) = q = [ H :
q2
( x)] ,
Q –
H/
q2
( x)
f (P ) = 1,
H/
2)
q2
q2
P .
( x)
d(P ) = (q – 1)(q + 2).
,
P ,
deg Q = 1.
( x)
Diff ( H /
q2
( x)) = (q – 1)(q + 2)Q .
3) (x) = qQ , (y) = (q + 1)Q .
4) (dx) = (2g – 2)Q .
i i
5)
xy
i
0, 0
j
q – 1, iq + j(q + 1)
r
L(rQ )
.
q2
6)
q2
q
q2
Q
,
H/
q +1
.
,
,
q2
+
=
q +1
.
1,
H/
N
,
q
q
,
P
q2
,
x(Q
P.
H/
q2
,
3
N=1+q .
,
:
,
) = , y(Q
,
)= .
Q ,
65
8.4.
k
*
8.4.1.
d.
n,
H=
q2
q
,
y +y=x
8.4.2.
.
P
-
,
q 1
q
,
q2
( x, y )
q +1
D=
H/
q2
Q .
r
Cr = CL (D, rQ ).
Cr.
3
1)
2)
3)
Cr
n=q .
L(rQ ) L(sQ ) ,
L(rQ ) = {0} ,
r s,
r < 0,
4)
r > q + q – q – 2 = q + 2g – 2,
3
2
, Cr
Cs.
, Cr = {0}.
3
3
deg(rQ ) = r > 2g – 2
deg(rQ – D) = r – q > 2g – 2.
,
–
:
dim(rQ ) = deg(rQ ) + 1 – g = r + 1 – g;
3
dim(rQ – D) = deg(rQ – D) + 1 – g = r – q + 1 – g.
Cr
3
3
k = dim Cr = dim(rQ ) – dim(rQ – D) = r + 1 – g – r + q – 1 + g = q = n.
, Cr =
8.4.3.
n
q2
.
,
.
Cr
t=
r
3
2
q + q – q – 2.
:
Cr
Cq 3
(x
) = xq
q2 q 2 r
2
.
x
q2
( x) .
q2
2
q2
( , )
,
q
,
v P , (t ) = e ( P
,
+ =
q +1
:
| P )vP (t ) = vP (t ) =
vP ( x
, t
) = vP ( x
P
,
) = 1.
D
:
H
(t) = (t) = ConH /
q2
( x)
(t )
q2
(x)
= ConH /
q2
(x
( x)
q2
)
q2
( x)
=
66
= ConH /
q2
P ) = ConH /
(P
( x)
q2
=
, dt = d ( x q
2
q2 P
P
( x)
q2
=
q2
P
2
3
q e(Q
,
x ) = dx,
P )Q = D – q Q .
,
2
(dt) = (dx) = (2g – 2)Q = (q – q – 2)Q .
y = 1,
4.4.3
= ydt/t
4.4.4
Cr = C (D, rQ ) = CL (D, D – rQ + (dt) – (t)) =
3
2
= CL (D, (q + q – q – 2 – r)Q ) = Cq3
8.4.4.
.
:
I = {n
s
q2 q 2 r
z
H,
,
(z) = nQ }.
I(s) = {n
I n
s}.
:
1) dim(n Q ) > dim(n – 1)Q
z L(n Q ) \ L((n – 1)Q )
z
H : (z)
nQ
z
H : vP (z)
P
Q
z
H : vP (z)
P
Q
z
H : (z) = n Q
n I.
2) dim(n Q ) – dim((n – 1)Q )
(n – 1)Q
–n
vQ ( z ) < (n – 1)
vQ ( z ) = n
deg(n Q ) – deg(n – 1)Q = n – n +1 = 1.
dim(n Q )
,
(z)
,
dim((n – 1)Q ) + 1
,
n
I
dim(n Q ) = dim((n – 1)Q ) + 1.
3)
{0}
I(s)
K
L(0)
L(Q )
,
L(2Q )
1
...
L(sQ )
dim(sQ ).
,
I(s) = dim(sQ ).
4)
s
2g – 1 = q(q – 1) – 1,
–
I(s) = deg(sQ ) + 1 – g = s + 1 – q(q – 1) / 2.
5)
8.3.4, 5)
,
I(s) = {(i, j)
2
j
q–1
i q + j(q + 1)
s} .
67
8.4.5.
.
I (r ) , 0
1) dim Cr =
3
q3
3
r
r
q3 ,
I ( s) , q 3
2
2
q + q – q – 2.
q3
r
q2
q 2,
2
s = q + q – q – 2 – r.
q –q–2 0.
8.4.3
Cr = Cs
,
-
,
3
dim Cr = n – dim Cs = q – I(s) .
2)
8.4.4, 4).
3
n – deg(rQ ) = q – r.
d
3
d=q –r
8.4.6.
.
Cr.
T = {( , )
s = i q + j(q + 1),
i
0, 0
j
.
+
=
q +1
}.
q – 1,
us = (
q3
q2
q
2
q2
r
q – q – 2, Cq 3 3 2 q +q –q–2–r
Тебе могут подойти лекции
А давай сэкономим
твое время?
твое время?
Дарим 500 рублей на первый заказ,
а ты выбери эксперта и расслабься
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве
Не ищи – спроси
у ChatGPT!
у ChatGPT!
Боты в Telegram ответят на учебные вопросы, решат задачу или найдут литературу
Попробовать в Telegram
Оставляя свои контактные данные и нажимая «Попробовать в Telegram», я соглашаюсь пройти процедуру
регистрации на Платформе, принимаю условия
Пользовательского соглашения
и
Политики конфиденциальности
в целях заключения соглашения.
Пишешь реферат?
Попробуй нейросеть, напиши уникальный реферат
с реальными источниками за 5 минут
с реальными источниками за 5 минут
Теория функциональных полей над конечным полем констант
Хочу потратить еще 2 дня на работу и мне нужен только скопированный текст,
пришлите в ТГ