Справочник от Автор24
Поделись лекцией за скидку на Автор24

Сопротивление материалов — наука о прочности

  • 👀 458 просмотров
  • 📌 401 загрузка
Выбери формат для чтения
Загружаем конспект в формате doc
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
Конспект лекции по дисциплине «Сопротивление материалов — наука о прочности» doc
1. Введение и основные понятия 2. Метод сечений для определения внутренних усилий 3. Эпюры внутренних усилий при растяжении-сжатии и кручении 4. Эпюры внутренних усилий при прямом изгибе 5. Понятие о напряжениях и деформациях 6. Свойства тензора напряжений. Главные напряжения 7. Плоское напряженное состояние 8. Упругость и пластичность. Закон Гука 9. Механические характеристики конструкционных материалов 10. Влияние различных факторов на механические характеристики материалов 11. Основные понятия теории надежности конструкций 12. Прочность и перемещения при центральном растяжении или сжатии 13. Расчет статически неопределимых систем по допускаемым нагрузкам 14. Учет собственного веса при растяжении и сжатии. 15. Расчет гибких нитей 16. Геометрические характеристики плоских сечений 17. Моменты инерции относительно параллельных осей 18. Главные оси инерции и главные моменты инерции 19. Прямой чистый изгиб стержня 20. Прямой поперечный изгиб стержня 21. Составные балки и перемещения при изгибе 22. Напряжения и деформации при кручении стержней кругового поперечного сечения 23. Практические примеры расчета на сдвиг. Заклепочные соединения 24. Расчет заклепок на смятие и листов на разрыв 25. Расчет сварных соединений 26. Косой изгиб призматического стержня 27. Совместное действие изгиба и растяжения или сжатия 28. Ядро сечения при внецентренном сжатии 29. Совместные действия изгиба и кручения призматического стержня 30. Расчет балок переменного сечения 31. Расчет балки на упругом основании 32. Энергетические методы расчета деформаций 33. Теорема Кастильяно 34. Теоремы о взаимности работ и максвелла — мора 35. Расчет статически неопределимых балок. Способ сравнения деформаций 36. Применение вариационных методов 37. Расчет статически неопределимых стержневых систем 38. Метод сил 39. Расчет толстостенных цилиндров 40. Расчет тонкостенных сосудов и резервуаров 41. Расчет быстровращающегося диска 42. Устойчивость сжатых стержней. Формула Эйлера 43. Анализ формулы Эйлера 44. Пределы применимости формулы Эйлера 45. Прочность при циклически изменяющихся напряжениях 46. Диаграмма усталостной прочности 47. Расчет коэффициентов запаса усталостной прочности 48. Основы вибропрочности конструкций 49. Расчет динамического коэффициента при ударной нагрузке 50. Оценка прочности при ударной нагрузке Лекция № 1. Введение и основные понятия    Сопротивление материалов – наука о прочности, жесткости и надежности элементов инженерных конструкций. Методами сопротивления материалов ведутся практические расчеты и определяются необходимые, как говорят, надежные размеры деталей машин, различных конструкций и сооружений.    Основные понятия сопротивления материалов опираются на законы и теоремы общей механики и в первую очередь на законы статики, без знания которых изучение данного предмета становится практически невозможным.    В отличие от теоретической механики сопротивление материалов рассматривает задачи, где наиболее существенными являются свойства деформируемых тел, а законы движения тела, как жесткого целого, не только отступают на второй план, но в ряде случаев являются попросту несущественными.    Сопротивление материалов имеет целью создать практически приемлемые простые приемы расчета типичных, наиболее часто встречающихся элементов конструкций. Необходимость довести решение каждой практической задачи до некоторого числового результата заставляет в ряде случаев прибегать к упрощающим гипотезам – предположениям, которые оправдываются в дальнейшем путем сопоставления расчетных данных с экспериментом.    Необходимо отметить, что первые заметки о прочности упоминаются в записках известного художника ЛЕОНАРДО Де ВИНЧИ, а начало науки о сопротивлении материалов связывают с именем знаменитого физика, математика и астронома ГАЛИЛЕО ГАЛИЛЕЯ. В 1660 году Р.ГУК сформулировал закон, устанавливающий связь между нагрузкой и деформацией: «Какова сила – таково и действие». В XVIII веке необходимо отметить работы Л.ЭЙЛЕРА по устойчивости конструкций. XIX – XX века являются временем наиболее интенсивного развития науки в связи с общим бурным ростом строительства и промышленного производства при безусловно огромном вкладе ученых-механиков России.    Итак, мы будем заниматься твердыми деформированными телами с изучением их физических свойств. Введем основные понятия, принимаемые при изучении дисциплины. Прочность – это способность конструкции выдерживать заданную нагрузку, не разрушаясь. Жесткость – способность конструкции к деформированию в соответствие с заданным нормативным регламентом. Деформирование – свойство конструкции изменять свои геометрические размеры и форму под действием внешних сил Устойчивость – свойство конструкции сохранять при действии внешних сил заданную форму равновесия. Надежность – свойство конструкции выполнять заданные функции, сохраняя свои эксплуатационные показатели в определенных нормативных пределах в течение требуемого промежутка времени. Ресурс – допустимый срок службы изделия. Указывается в виде общего времени наработки или числа циклов нагружения конструкции. Отказ – нарушение работоспособности конструкции. Опираясь на вышесказанное, можно дать определение прочностной надежности. Прочностной надежностью называется отсутствие отказов, связанных с разрушением или недопустимыми деформациями элементов конструкции.    На рис.1 приведена структура модели прочностной надежности. Она включает известные модели или ограничения, которые априорно накладываются на свойства материалов, геометрию, формы изделия, способы нагружения, а также модель разрушения. Инженерные модели сплошной среды рассматривают материал как сплошное и однородное тело, наделенное свойством однородности структуры. Модель материала наделяется свойствами упругости, пластичности и ползучести. Рис.1. Структура модели прочностной надежности элементов конструкций Упругостью называется свойство тела восстанавливать свою форму после снятия внешних нагрузок. Пластичностью называется свойство тела сохранять после прекращения действия нагрузки, или частично полученную при нагружении, деформацию. Ползучестью называется свойство тела увеличивать деформацию при постоянных внешних нагрузках. Основными моделями формы в моделях прочностной надежности, как известно, являются: стержни, пластины, оболочки и пространственные тела (массивы), рис.2. Модели Рис.2. Основные модели формы в моделях прочностной надежности: а) стержень, б) пластина, в) оболочка   нагружения содержат схематизацию внешних нагрузок по величине, характеру распределения (сосредоточенная или распределенная сила или момент), а также воздействию внешних полей и сред. Внешние силы, действующие на элемент конструкции, подразделяются на 3 группы: 1) сосредоточенные силы, 2) распределенные силы, 3) объемные или массовые силы. Сосредоточенные силы — силы, действующие на небольших участках поверхности детали (например давление шарика шарикоподшипника на вал, давление колеса на рельсы и т.п.) Распределенные силы приложены значительным участкам поверхности (например давление пара в паропроводе, трубопроводе, котле, давление воздуха на крыло самолета и т.д. Объемные или массовые силы приложены каждой частице материала (например силы тяжести, силы инерции)    После обоснованного выбора моделей формы, материала, нагружения переходят к непосредственной оценке надежности с помощью моделей разрушения. Модели разрушения представляют собой уравнения, связывающие параметры работоспособности элемента конструкции в момент разрушения с параметрами, обеспечивающими прочность. Эти уравнения (условия) называют условиями прочности. Обычно рассматриваются в зависимости от условий нагружения четыре модели разрушения: • статического разрушения, • длительно статического разрушения, • малоциклового статического разрушения, • усталостного разрушения.    При малом числе циклов (N<102) развиваются значительные пластические деформации (статическое разрушение), при большом числе циклов (N>105) пластические деформации отсутствуют (усталостное разрушение). В промежуточной области (102 N’ = – N” (9) 2. {Q’y, Q”y} ~ 0 > Q’y = – Q”y   3. {Q’z, Q”z} ~ 0 > Q’z = – Q”z   4. {М’x, M”x} ~ 0 > М’x = – M”x   5. {M’y, M”y} ~ 0 > M’y = – M”y   6. {М’z, M”z} ~ 0 > М’z = – M”z   Общее число внутренних усилий (шесть) в статически определимых задачах совпадает с количеством уравнений равновесия для пространственной системы сил и связано с числом возможных взаимных перемещений одной условно отсеченной части тела по отношению к другой. Искомые усилия определяются из соответствующих уравнений для любой из отсеченных частей в следящей системе координатных осей. Так, для любой отсеченной части соответствующие уравнения равновесия приобретают вид; 1. ix = N + P1x + P2x + … + Pkx = 0 > N (10) 2. iy = Qy + P1y + P2y + … + Pky = 0 > Qy   3. iz = Q + P1z + P2z + … + Pkz = 0 > Qz   4. x (Pi) = Mx + Mx(Pi) + … + Mx(Pk) = 0 > Mx   5. y (Pi) = My + My(Pi) + … + My(Pk) = 0 > My   6. z (Pi) = Mz + Mz(Pi) + … + Mz(Pk) = 0 > Mz   Здесь для простоты обозначений системы координат с' х' у' z' и с" х" у" т" заменены единой оxуz. Уважаемые коллеги! Таким образом, предлагаемый автором метод построения эпюр внутренних усилий, освобождающий Вас от механического запоминания "правил знаков" при построении эпюр внутренних усилий, заключается в следующем: 1. Определите реакции в связях по величине и направлению в базовой системе координат. 2. Определите количество участков бруса для использования метода сечений. 3. Мысленно рассеките брус в пределах исследуемого участка и изобразите на Ваше усмотрение левую или правую условно отсеченную часть. 4. Укажите пределы изменения положения сечения вдоль продольной оси в базовой системе координат на этом участке. 5. Введите в искомом сечении соответственно левую или правую следящую систему координатных осей. 6. Задайтесь положительными направлениями внутренних усилий в следящей системе координат. 7. Составьте уравнения равновесия для рассматриваемой условно отсеченной части бруса в следящей системе координат. 8. Определите из уравнений равновесия искомые внутренние усилия. 9. Вычислите искомые внутренние усилия на границах участков и при необходимости, — их экстремальные значения. 10. Выбрав масштаб усилий, выполните построение эпюры в соответствие с полученными их модульными значениями и знаками.    Указанная последовательность действий (кроме п.1) составляет суть метода сечений (разреза), единственного метода для определения внутренних усилий.    Не забываем, что при распределенной нагрузке в соответствие с теоремой Вариньона векторный момент равнодействующей рассматриваемой системы сил относительно любой точки равен сумме векторных моментов всех сил этой системы относительно той же точки.    Эпюры внутренних усилий позволяет визуально найти положение опасного сечения, где действуют наибольшие по модулю внутренние усилия. В этом сечении при прочих равных условиях наиболее вероятно разрушение конструкции при предельных нагрузках. Лекция № 3. Эпюры внутренних усилий при растяжении-сжатии и кручении ЭПЮРЫ ВНУТРЕННИХ УСИЛИЙ ПРИ РАСТЯЖЕНИИ-СЖАТИИ Растяжением или сжатием называется такой простой вид сопротивления, при котором внешние силы приложены вдоль продольной оси бруса, а в поперечном сечении его возникает только нормальная сила. Рассмотрим расчетную схему бруса постоянного поперечного сечения с заданной внешней сосредоточенной нагрузкой Р и распределенной q, (рис.1). а) расчетная схема, б) первый участок, левая отсеченная часть, в) второй участок, левая отсеченная часть, г) второй участок, правая отсеченная часть, д) эпюра нормальных сил Рис.1. Построение эпюры нормальных сил:   Пусть . Прежде всего определим опорную реакцию R, задавшись ее направлением вдоль оси х. Брус имеет 2 участка 1 и 2. В пределах первого участка мысленно рассечем брус на 2 части нормальным сечением и рассмотрим равновесие, допустим левой части, введя следующую координату х1, рис.1 б: Следовательно, в пределах первого участка брус претерпевает сжатие постоянной нормальной силой. Аналогично поступим со вторым участком. Мысленно рассечем его сечением 2—2, и рассмотрим равновесие левой части (рис.1 в).Установим предварительно границы изменения х2: Подставляя граничные значения параметра х2, получим: Таким образом, в пределах второго участка брус растянут и нормальная сила изменяется по линейному закону. Аналогичный результат получается и при рассмотрении правой отсеченной части (рис.1 г): На основе полученных данных строится эпюра нормальных сил в виде графика распределения нормальной силы по длине бруса (рис.1 д). Характерно, что скачки на эпюре обусловлены наличием в соответствующих сечениях сосредоточенных сил R и Р, что в свою очередь может служить правилом правильности выполненных построений.   ЭПЮРЫ ВНУТРЕННИХ УСИЛИЙ ПРИ КРУЧЕНИИ Кручением называется простой вид сопротивления, при котором к брусу (валу) прикладываются внешние пары сил в плоскостях, совпадающих с поперечным сечением вала, а в последних возникает только внутренний крутящий момент. Рассмотрим расчетную схему вала, нагруженного двумя сосредоточенными моментами М и 2М и распределенными по длине: m, рис.2. Методика построения эпюры аналогична только что рассмотренной методике при растяжении-сжатии. а) расчетная схема, б) первый участок, левая часть в) второй участок, левая часть г) третий участок, правая часть, д) эпюра внутренних крутящих моментов Рис. 2. Построение эпюры внутренних крутящих моментов:   В исходных сечениях No 1,2 и 3 задаются положительными значениями внутренних крутящих моментов М1, М2, М3. Пусть М=ml. Для первого участка (рис.2 б): Для второго участка (рис.2 в): Для третьего участка (рис.2 г): Границы измерения параметра х3 в следующей системе координат: Тогда: Отмеченные значения ординат откладываются на эпюре внутренних крутящих моментов (рис.2 д). Лекция № 4. Эпюры внутренних усилий при прямом изгибе.    Прямым изгибом называется такой вид простого сопротивления, когда внешние силы приложены перпендикулярно продольной оси бруса (балки) и расположены в одной из главных плоскостей в соответствие с конфигурацией поперечного сечения балки. Как известно, при прямом изгибе в поперечном сечении возникают два вида внутренних усилий: поперечная сила и внутренний изгибающий момент. Рассмотрим пример расчетной схемы консольной балки с сосредоточенной силой Р, рис. 1 а., … а) расчетная схема, б) левая часть, в) правая часть, г) эпюра поперечных сил, д) эпюра изгибающих моментов Рис.1. Построение эпюр поперечных сил и внутренних изгибающих моментов при прямом изгибе:   Прежде всего вычислим реакции в связи на базе уравнений равновесия: После мысленного рассечения балки нормальным сечением 1—1 рассмотрим равновесие левой отсеченной части (рис.1 б), получим: Таким образом, на первом участке поперечная сила отрицательная и постоянная, а внутренний изгибающий момент изменяется по линейному закону. Для правой отсеченной части при рассмотрении ее равновесия результат аналогичен рис.1 в. А именно: На основании полученных значений строятся эпюры поперечных сил (рис.1 г) и внутренних изгибающих моментов (рис.1 д). Как следует из построенных эпюр , а в сечении жесткой связи. Именно это сечение и является наиболее опасным в данной расчетной схеме. Продифференцируем выражение внутреннего изгибающего момента по координате х: Как видим, после дифференцирования получено выражение для поперечной силы. Случайность это или закономерность? – Закономерность.   ДИФФЕРЕНЦИАЛЬНЫЕ ЗАВИСИМОСТИ МЕЖДУ ВНУТРЕННИМИ УСИЛИЯМИ ПРИ ИЗГИБЕ Рассмотрим расчетную схему балки с произвольной распределенной нагрузкой (рис.2). Рис.2. Схема изгиба балки: а) расчетная модель, б) фрагмент балки   Составим уравнение равновесия: Таким образом, действительно: первая производная от внутреннего изгибающего момента по линейной координате равна поперечной силе в сечении. Это известное свойство функции и ее первой производной успешно используется при проверке правильности построения эпюр. Так, для расчетной схемы консольной балки (рис.1) эта связь дает следующие проверочные результаты: и М убывает от 0 до –Pl. и М х. Рассмотрим второй характерный пример изгиба двухопорной балки (рис.3). а) расчетная схема, б) модель первого участка, в) модель второго участка, г) эпюра поперечных сил, д) эпюра изгибающих моментов Рис.3. Изгиб двухопорной балки:   Очевидно, что опорные реакции RA = RB : • < б) (рис.3 участка первого> • для второго участка (рис.3 в) – Эпюры внутренних усилий представлены соответственно на рис.3 г и 3 д. На основе дифференциальной связи Q и М, получим: • для первого участка: Q > 0 и М возрастает от нуля до . Q = const и M x • для второго участка: Q < 0 и М убывает с до нуля. Q = const и M также пропорционален х, т.е. изменяется по линейному закону. Опасным в данном примере является сечение балки в центре пролета: . Третий характерный пример связан с использованием распределенной по длине балки нагрузки (рис.4). Следуя методике, принятой ранее, очевидно равенство опорных реакций: , а для искомого сечения (рис.4 б) выражения для внутренних усилий приобретают вид: а) расчетная схема, б) отсеченная часть, в) эпюра поперечных сил, г) эпюра внутренних изгибающих моментов Рис.4 Двухопорная балка с равномерно распределенной нагрузкой:   На обеих опорах изгибающий момент отсутствует. Тем не менее опасным сечением балки будет центр пролета при . Действительно, исходя из свойства функции и производной при , внутренний изгибающий момент достигает экстремума. Для нахождения исходной координаты х0 (рис.4 в) в общем случае приравняем выражение поперечной силы к нулю. В итоге получим После подстановки в выражение изгибающего момента получим: Таким образом,    Необходимо отметить, что техника построения эпюр при изгибе наиболее трудно усваивается слушателями. Вам представляется возможность научиться «быстрому» построению эпюр на тесторе-тренажере, приведенном в ПРИЛОЖЕНИИ и решить в выходных тестах по сопротивлению материалов Вам знакомые по постановке задачи позиции. Лекция № 5. Понятие о напряжениях и деформациях    Как отмечалось выше, внутренние силы, действующие в некотором сечении со стороны отброшенной части тела, можно привести к главному вектору и главному моменту. Зафиксируем точку М в рассматриваемом сечении с единичным вектором нормали n. В окрестности этой точки выделим малую площадку F. Главный вектор внутренних сил, действующих на этой площадке, обозначим через P (рис. 1 а). При уменьшении размеров площадки соответственно Рис.1. Композиция вектора напряжения. а) вектор полного напряжения б) вектор нормального и касательного напряжений   уменьшаются главный вектор и главный момент внутренних сил, причем главный момент уменьшается в большей степени. В пределе при получим    Аналогичный предел для главного момента равен нулю. Введенный таким образом вектор рn называется вектором напряжений в точке. Этот вектор зависит не только от действующих на тело внешних сил и координат рассматриваемой точки, но и от ориентации в пространстве площадки F, характеризуемой вектором п. Совокупность всех векторов напряжений в точке М для всевозможных направлений вектора п определяет напряженное состояние в этой точке.    В общем случае направление вектора напряжений рn не совпадает с направлением вектора нормали п. Проекция вектора рn на направление вектора п называется нормальным напряжением , а проекция на плоскость, проходящую через точку М и ортогональную вектору n, — касательным напряжением (рис. 1 б). Размерность напряжений равна отношению размерности силы к размерности площади. В международной системе единиц СИ напряжения измеряются в паскалях: 1 Па=1 Н/м2.    При действии внешних сил наряду с возникновением напряжений происходит изменение объема тела и его формы, т. е. тело деформируется. При этом различают начальное (недеформированное) и конечное (деформированное) состояния тела.    Отнесем недеформированное тело к декартовой системе координат Oxyz (рис. 2). Положение некоторой точки М в этой системе координат определяется радиус-вектором r(х, у, z). В деформированном состоянии точка М займет новое положение М/ , характеризуемое радиус-вектором r' (х, у, z). Вектор u=r'—r называется вектором, перемещений точки М. Проекции вектора u на координатные оси определяют компоненты вектора перемещений и(х, у, z), v(х, у, z), w(х, у, z), равные разности декартовых координат точки тела после и до деформации.    Перемещение, при котором взаимное расположение точек тела не меняется, не сопровождается деформациями. В этом случае говорят, что тело перемещается как жесткое целое (линейное перемещение в пространстве или поворот относительно некоторой точки). С другой стороны, деформация, связанная с изменением формы тела и его объема, невозможна без перемещения его точек. Рис.2. Композиция вектора перемещения      Деформации тела характеризуются изменением взаимного расположения точек тела до и после деформации. Рассмотрим, например, точку М и близкую к ней точку N, расстояние между которыми в недеформированном состоянии вдоль направления вектора s обозначим через (рис. 2). В деформированном состоянии точки М и N переместятся в новое положение (точки М' и N’), расстояние между которыми обозначим через s'. Предел отношения называется относительной линейной деформацией в точке М в направлении вектора s, рис.3. Рассматривая три взаимно перпендикулярных направления, например, вдоль координатных осей Ох, Оу и Oz, получим три компоненты относительных линейных деформаций характеризующих изменение объема тела в процессе деформации. Для описания деформаций, связанных с изменением формы тела, рассмотрим точку М и две близкие к ней точки N и Р, расположенные в недеформированном состоянии в направлении двух взаимно ортогональных векторов s1 и s2. Расстояния между точками обозначим через и (рис. 4). В деформированном состоянии положение точек обозначим через М', N' и Р'. Угол между отрезками M'N' и М'Р' в общем случае будет отличным от прямого. При , изменение угла между двумя ортогональными до деформации направлениями называется угловой деформацией. Как видно из рис. 4, угловая деформация складывается из двух углов и , связанных с поворотами отрезков M’N' и М'Р' 'в.плоскости, образованной векторами s1 и s2, относительно этих векторов. Если заданы три взаимно ортогональных вектора, направленных вдоль координатных осей, то имеются три угловые деформации , и , которые вместе с тремя линейными деформациями , и полностью определяют деформированное состояние в точке. Рис.3. Композиция линейной деформации   Рис. 4. Композиция угловой деформации   НАПРЯЖЕННОЕ СОСТОЯНИЕ В ТОЧКЕ. ТЕНЗОР НАПРЯЖЕНИЙ    Вектор напряжений pn является физическим объектом, имеющим длину, направление и точку приложения. В этом смысле он обладает векторными свойствами. Однако этому объекту присущи некоторые свойства, не характерные для векторов. В частности, величина и направление вектора напряжений зависят от ориентации вектора n нормали бесконечно малого элемента поверхности dF. Совокупность всех возможных пар векторов п, рn в точке определяет напряженное состояние в данной точке. Однако для полного описания напряженного состояния в точке нет необходимости задавать бесконечное множество направлений вектора n, достаточно определить векторы напряжений на трех взаимно перпендикулярных элементарных площадках. Напряжения на произвольно ориентированных площадках могут быть выражены через эти три вектора напряжений. В дальнейшем лектор умышленно меняет ориентацию координат. Так, что ось Z – продольная ось бруса, а X и Y – координаты любой точки его поперечного сечения.    Проведем через точку М три взаимно перпендикулярных плоскости с векторами нормалей, направления которых совпадают с направлениями координатных осей. Элементарные площадки образуем дополнительными сечениями, параллельными исходным плоскостям и отстоящими от них на бесконечно малые расстояния dx, dy, dz. В результате в окрестности точки М получим бесконечно малый параллелепипед, поверхность которого образована элементарными площадками dFх=dydz, dFн==dxdz, dFя=dxdy. Векторы напряжений px, py, pz, действующие на элементарных площадках, показаны на рис. 5.    Разложим каждый вектор напряжений на составляющие вдоль координатных осей (рис. 6). На каждой площадке действует одно нормальное напряжение , , , где индекс обозначает направление вектора нормали к площадке и два касательных напряжения с двумя индексами, из которых первый указывает направление действия компоненты напряжения, второй—направление вектора нормали к площадке. Рис. 5. Равновесное состояние бесконечно-малого параллелепипеда   Рис.6. Компоненты тензора напряженного состояния      Совокупность девяти компонент напряжений (по три на каждой из трех взаимно перпендикулярных площадок) представляет собой некоторый физический объект, называемый тензором напряжений в точке. Тензор можно представить в виде матрицы, соответствующим образом упорядочив девять компонент:    Для компонент тензора напряжений общепринятым является следующее правило знаков: компонента считается положительной, если на площадке с положительной внешней нормалью (т. е. направленной вдоль одной из координатных осей) эта компонента направлена в сторону положительного направления соответствующей оси. На рис. 6 все компоненты тензора напряжений изображены положительными. На площадках с отрицательной внешней нормалью (грани параллелепипеда, не видимые на рис. 5 и 6) положительная компонента направлена в противоположном направлении. Напряжения на трех взаимно ортогональных площадках с отрицательными направлениями нормалей также характеризуют напряженное состояние в точке. Эти напряжения, являющиеся компонентами тензора напряжений, определяются аналогично напряжениям на площадках с положительной нормалью. Они обозначаются теми же символами и имеют положительное направление, обратное изображенному на рис. 6. Лекция № 6. Свойства тензора напряжений. Главные напряжения    Тензор напряжений обладает свойством симметрии. Для доказательства этого свойства рассмотрим приведенный в лекции 5 элементарный параллелепипед с действующими на его площадках компонентами тензора напряжений. Так как тело находится в равновесии, следовательно, находится в равновесии любая его часть, в том числе и элементарный объем. Запишем одно из шести уравнений равновесия этого объема, а именно — сумму моментов всех сил относительно оси Ох. Все силы, кроме двух, либо не создают момента относительно ocи Ох, либо взаимно уничтожаются. Отличные от нуля моменты создают компоненты (верхняя грань) и (права грань): После сокращения на элемент объема dV=dxdydz получим Аналогично, приравнивая нулю сумму моментов всех сил относительно осей Оу и Ог, получим еще два соотношения    Эти условия симметрии и тензора напряжений называются также условиями парности касательных напряжений: касательные напряжения, действующие по двум взаимно перпендикулярным площадкам в направлениях, ортогональных ребру, образованному пересечением этих площадок, равны по величине. С учетом этих свойств из девяти компонент тензора напряжений независимыми оказываются шесть компонент.    Покажем теперь, что компоненты тензора напряжений определенные для трех взаимно перпендикулярных площадок, полностью характеризуют напряженное состояние в точке, т. е. позволяют вычислить компоненты вектора напряжений на площадках, произвольно ориентированных относительно выбранной системы координат. Для этого рассмотрим элементарный объем, образованный сечением параллелепипеда, изображенного на рис. 1, плоскостью, пересекающей координатные оси и имеющей единичный вектор нормали Рис.1. Элементарный четырехгранник с компонентами напряженного состояния.   п с компонентами nx, ny, nz. На гранях полученного таким образом бесконечно малого тетраэдра действуют напряжения, показанные на рис. 1. При этом вектор напряжений pn на наклонной площадке разложен па составляющие рx, рy, рz вдоль координатных осей. Площади граней, ортогональных координатным осям и вектору нормали, обозначим соответственно dFx, dFy, dFz, dF. Эти площади связаны между собой соотношениями dFx=dFnx, dFy=dFny, dFz=dFnz (1) вытекающими из того, что грани, ортогональные координатным осям, есть проекции наклонной площадки на соответствующую координатную плоскость.    Проектируя силы, действующие на гранях элементарного тетраэдра, на координатные оси, получим уравнения равновесия для рассматриваемого объема. Например, проекции всех поверхностных сил на ось Ох дают    С учетом соотношений (1) после сокращения на dF получим уравнение, связывающее проекцию рx вектора напряжений с соответствующими компонентами тензора напряжений. Объединяя это уравнение с двумя аналогичными уравнениями, полученными проектированием сил на оси Оy и Оz, приходим к следующим соотношениям (2) носящим название формул Коши. Эти формулы определяют вектор напряжений на произвольно выбранной площадке с вектором п через компоненты тензора напряжений. Формулы (2) позволяют вычислить через компоненты тензора напряжений полное напряжение (3) нормальное напряжение (4) и касательное напряжение (5)    Среди всех возможных направлений вектора нормали n существуют такие направления, для которых вектор напряжений pn параллелен вектору п. На соответствующих площадках действуют только нормальные напряжения, а касательные напряжения отсутствуют. Такие площадки называются главными, а нормальные напряжения на этих площадках называются главными напряжениями. Пусть площадка с единичным вектором нормали является главной. Условия коллинеарности векторов pn и n есть условия пропорциональности их компонент: С учетом формул Коши получим систему линейных однородных уравнений относительно неизвестных компонент nx, ny, nz вектора нормали к главной площадке Эта система уравнений имеет ненулевое решение, если определитель, составленный из коэффициентов уравнений, обращается в нуль: (6) Раскрывая определитель, приходим к кубическому уравнению относительно главного напряжения (7) Здесь введены обозначения (8) (9)   Уравнение (7) называется характеристическим уравнением для тензора напряжений. Коэффициенты (9) этого уравнения называются инвариантами тензора напряжений. Решение кубического уравнения (8) имеет три вещественных корня которые обычно упорядочиваются .    Каждому значению (j=1, 2, 3) соответствует вектор n j, характеризующий положение j-й главной площадки, с компонентами n j1, n j2, n j3. Для нахождения этих компонент достаточно в уравнения подставить найденное значение и решить любые два из этих уравнений совместно с условием нормировки    Главные напряжения обладают важным свойством: по сравнению со всеми другими площадками нормальные напряжения на главных площадках принимают экстремальные значения. Для доказательства этого свойства достаточно исследовать на экстремум нормальное напряжение как функцию nx, ny, nz при дополнительном ограничении. Можно показать, что три главные площадки, соответствующие главным напряжениям , взаимно перпендикулярны или, что то же самое, векторы nj и nk, соответствующие различным значениям j и k —; ортогональны. Условие ортогональности имеет вид (10) Кубическое уравнение (8) можно переписать в виде (11) Приводя это уравнение к виду (8), получим следующие выражения для инвариантов (9) через главные напряжения: (12) Термин «инвариантность» обозначает независимость некоторой величины от выбора системы координат. Введем среднее напряжение по формуле (13) Тензор напряжений можно представить в виде суммы двух тензоров , где (14)    Первый тензор называется шаровым, он характеризует изменение объема тела без изменения его формы. Второй тензор, называемый девиатором, характеризует изменение формы. Особенностью девиатора напряжений является равенство нулю его первого инварианта: (15)    Найдем положение площадок, на которых касательные напряжения принимают экстремальные значения. Для этого нужно отыскать экстремумы касательного напряжения. Экстремальные касательные напряжения действуют на площадках, параллельных одной из главных осей и образующих с двумя другими осями угол . По величине эти напряжения равны (16) При этом на площадках с экспериментальными касательными напряжениями присутствуют нормальные напряжения, которые равны    Фигура, которую образуют площадки с экстремальными касательными напряжениями, изображена на рис. 2. Она принадлежит к классу параллелоэдров и представляет собой 12-гранник с гранями в виде ромбов, отношение диагоналей которых равно . Рис.2. Параллепоэдр распределения экстремальных касательных напряжений   Таким образом, общая теория напряженного состояния позволяет охватывать, в целом, весь комплекс видов сопротивлений, как простого, так и сложного характера. Лекция № 7. Плоское напряженное состояние    Рассмотрим важный для приложений случай плоского напряженного состояния, реализуемого, например, в плоскости Oyz. Тензор напряжений в этом случае имеет вид    Геометрическая иллюстрация представлена на рис.1. При этом площадки х=const являются главными с соответствующими нулевыми главными напряжениями. Инварианты тензора напряжений равны , а характеристическое уравнение принимает вид Корни этого уравнения равны (1) Нумерация корней произведена для случая Рис.1. Исходное плоское напряженное состояние.   Рис.2. Позиция главных напряжений      Произвольная площадка характеризуется углом на рис. 1, при этом вектор п имеет компоненты: , , nх=0. Нормальное и касательное напряжения на наклонной площадке выражаются через угол следующим образом: (2) (3)    Так как на главных площадках касательное напряжение отсутствует, то, приравнивая нулю выражение (3), получим уравнение для определения угла между нормалью п и осью Оу (4)    Наименьший положительный корень уравнения (4) обозначим через . Так как tg(х)—периодическая функция с периодом , то имеем два взаимно ортогональных направления, составляющие углы и с осью Оу. Эти направления соответствуют взаимно перпендикулярным главным площадкам (рис. 2).    Если продифференцировать соотношение (2) по и приравнять производную нулю, то придем к уравнению (4), что доказывает экстремальность главных напряжений.    Для нахождения ориентации площадок с экстремальными касательными напряжениями приравняем нулю производную от выражения , откуда получим (5)   Сравнивая соотношения (4) и (5), находим, что    Это равенство возможно, если углы и отличаются на угол . Следовательно, направления площадок с экстремальными касательными напряжениями отличаются от направлений главных площадок на угол (рис. 3). Рис.3. Экстремальность касательных напряжений   Величины экстремальных касательных напряжений получим после подстановки (5) в соотношение (3) с использованием формул . После некоторых преобразований получим Сравнивая это выражение с полученными ранее значениями главных напряжений (2.21), выразим экстремальные касательные напряжения через главные напряжения Аналогичная подстановка в (2) приводит к выражению для нормальных напряжений на площадках с Полученные соотношения позволяют проводить направленно-ориентированный расчет конструкций на прочность в случае плоского напряженного состояния.   ТЕНЗОР ДЕФОРМАЦИИ    Рассмотрим вначале случай плоской деформации (рис. 4). Пусть плоский элемент MNPQ перемещается в пределах плоскости и деформируется (изменяет форму и размеры). Координаты точек элемента до и после деформации отмечены на рисунке. Рис.4. Плоская деформация.   По определению относительная линейная деформация в точке М в направлении оси Ох равна Из рис. 4 следует Учитывая, что MN=dx, получим В случае малых деформаций, когда , , можно пренебречь квадратичными слагаемыми. С учетом приближенного соотношения справедливого при x<<1, окончательно для малой деформации получим Угловая деформация определяется как сумма углов и (4). В случае малых деформаций Для угловой деформации имеем Проводя аналогичные выкладки в общем случае трехмерной деформации, имеем девять соотношений (6)    связывающих линейные и угловые деформации с перемещениями. Эти соотношения носят название соотношений Коши. Три линейных и шесть угловых деформаций (6) образуют тензор малых деформаций (7)    Этот тензор полностью определяет деформированное состояние твердого тела. Он обладает теми же свойствами, что и тензор напряжений. Свойство симметрии непосредственно следует из определения угловых деформаций. Главные значения и главные направления, а также экстремальные значения угловых деформаций и соответствующие им направления находятся теми же методами, что и для тензора напряжений.    Инварианты тензора деформаций определяются аналогичными формулами, причем первый инвариант тензора малых деформаций имеет ясный физический смысл. До деформации его объем равен dV0 =dxdydz. Если пренебречь деформациями сдвига, которые изменяют форму, а не объем, то после деформации ребра будут иметь размеры (рис. 4), а его объем будет равен . Относительное изменение объема в пределах малых деформаций составит что совпадает с определением первого инварианта. Очевидно, что изменение объема есть физическая величина, не зависящая от выбора системы координат.    Так же, как и тензор напряжений, тензор деформаций можно разложить на шаровой тензор и девиатор. При этом первый инвариант девиатора равен нулю, т. е. девиатор характеризует деформацию тела без изменения его объема. Лекция № 8. Упругость и пластичность. Закон Гука    Действие внешних сил на твердое тело приводит к возникновению в точках его объема напряжений и деформаций. При этом напряженное состояние в точке, связь между напряжениями на различных площадках, проходящих через эту точку, определяются уравнениями статики и не зависят от физических свойств материала. Деформированное состояние, связь между перемещениями и деформациями устанавливаются с привлечением геометрических или кинематических соображений и также не зависят от свойств материала. Для того чтобы установить связь между напряжениями и деформациями, необходимо учитывать реальные свойства материала и условия нагружения. Математические модели, описывающие соотношения между напряжениями и деформациями, разрабатываются на основе экспериментальных данных. Эти модели должны с достаточной степенью точности отражать реальные свойства материалов и условия нагружения.    Наиболее распространенными для конструкционных материалов являются модели упругости и пластичности. Упругость — это свойство тела изменять форму и размеры под действием внешних нагрузок и восстанавливать исходную конфигурацию при снятии нагрузок. Математически свойство упругости выражается в установлении взаимно однозначной функциональной зависимости между.компонентами тензора напряжений и тензора деформаций. Свойство упругости отражает не только свойства материалов, но и условия нагружения. Для большинства конструкционных материалов свойство упругости проявляется при умеренных значениях внешних сил, приводящих к малым деформациям, и при малых скоростях нагружения, когда потери энергии за счет температурных эффектов пренебрежимо малы. Материал называется линейно-упругим, если компоненты тензора напряжений и тензора деформаций связаны линейными соотношениями.    При высоких уровнях нагружения, когда в теле возникают значительные деформации, материал частично теряет упругие свойства: при разгрузке его первоначальные размеры и форма полностью не восстанавливаются, а при полном снятии внешних нагрузок фиксируются остаточные деформации. В этом случае зависимость между напряжениями и деформациями перестает быть однозначной. Это свойство материала называется пластичностью. Накапливаемые в процессе пластического деформирования остаточные деформации называются пластическими.    Высокий уровень нагружения может вызвать разрушение, т. е. разделение тела на части. Твердые тела, выполненные из различных материалов, разрушаются при разной величине деформации. Разрушение носит хрупкий характер при малых деформациях и происходит, как правило, без заметных пластических деформаций. Такое разрушение характерно для чугуна, легированных сталей, бетона, стекла, керамики и некоторых других конструкционных материалов. Для малоуглеродистых сталей, цветных металлов, пластмасс характерен пластический тип разрушения при наличии значительных остаточных деформаций. Однако подразделение материалов по характеру разрушения на хрупкие и пластичные весьма условно, оно обычно относится к некоторым стандартным условиям эксплуатации. Один и тот же материал может вести себя в зависимости от условий (температура, характер нагружены я, технология изготовления и др.) как хрупкий или как пластичный. Например, пластичные при нормальной температуре материалы разрушаются как хрупкие при низких температурах. Поэтому правильнее говорить не о хрупких и пластичных материалах, а о хрупком или пластическом состоянии материала.    Пусть материал является линейно-упругим и изотропным. Рассмотрим элементарный объем, находящийся в условиях одноосного напряженного состояния (рис. 1), так что тензор напряжений имеет вид    При таком нагружении происходит увеличение размеров в направлении оси Ох, характеризуемое линейной деформацией , которая пропорциональна величине напряжения (1) Рис.1. Одноосное напряженное состояние      Это соотношение является математической записью закона Гука, устанавливающего пропорциональную зависимость между напряжением и соответствующей линейной деформацией при одноосном напряженном состоянии. Коэффициент пропорциональности E называется модулем продольной упругости или модулем Юнга. Он имеет размерность напряжений.    Наряду с увеличением размеров в направлении действия; же напряжения происходит уменьшение размеров в двух ортогональных направлениях (рис. 1). Соответствующие деформации обозначим через и , причем эти деформации отрицательны при положительных и пропорциональны : (2)    Коэффициент пропорциональности называется коэффициентом Пуассона, который в силу изотропности материала одинаков для обоих ортогональных направлений. Соотношения, аналогичные (1) и (2), в случае одноосного нагружения в направлении осей Оу, Ог напряжением , , соответственно имеют вид (3) (4)    При одновременном действии напряжений по трем ортогональным осям, когда отсутствуют касательные напряжения, для линейно-упругого материала справедлив принцип суперпозиции (наложения решений): С учетом формул (1 — 4) получим (5)    Касательные напряжения вызывают угловые деформации, причем при малых деформациях они не влияют на изменение линейных размеров, и следовательно, на линейные деформации. Поэтому они справедливы также в случае произвольного напряженного состояния и выражают так называемый обобщенный закон Гука.    Угловая деформация обусловлена касательным напряжением , а деформации и — соответственно напряжениями и . Между соответствующими касательными напряжениями и угловыми деформациями для линейно-упругого изотропного тела существуют пропорциональные зависимости (6) которые выражают закон Гука при сдвиге. Коэффициент пропорциональности G называется модулем сдвига. Существенно, что нормальное напряжение не влияет на угловые деформации, так как при этом изменяются только линейные размеры отрезков, а не углы между ними (рис. 1).    Линейная зависимость существует также между средним напряжением (2.18), пропорциональным первому инварианту тензора напряжений, и объемной деформацией (2.32), совпадающей с первым инвариантом тензора деформаций: (7) Рис.2. Плоская деформация сдвига   Соответствующий коэффициент пропорциональности К называется объемным модулем упругости.    В формулы (1 — 7) входят упругие характеристики материала Е, , G и К, определяющие его упругие свойства. Однако эти характеристики не являются независимыми. Для изотропного материала независимыми упругими характеристиками являются две, в качестве которых обычно выбираются модуль упругости Е и коэффициент Пуассона . Чтобы выразить модуль сдвига G через Е и , рассмотрим плоскую деформацию сдвига под действием касательных напряжений (рис. 2). Для упрощения выкладок используем квадратный элемент со стороной а. Вычислим главные напряжения , . Эти напряжения действуют на площадках, расположенных под углом к исходным площадкам. Из рис. 2 найдем связь между линейной деформацией в направлении действия напряжения и угловой деформацией . Большая диагональ ромба, характеризующая деформацию , равна Для малых деформаций С учетом этих соотношений До деформации эта диагональ имела размер . Тогда будем иметь Из обобщенного закона Гука (5) получим откуда Сравнение полученной формулы с записью закона Гука при сдвиге (6) дает (8) Сложим три соотношения упругости (5) (9) В итоге получим Сравнивая это выражение с объемным законом Гука (7), приходим к результату    Механические характеристики Е, , G и К находятся после обработки экспериментальных данных испытаний образцов на различные виды нагрузок. Из физического смысла все эти характеристики не могут быть отрицательными. Кроме того, из последнего выражения следует, что коэффициент Пуассона для изотропного материала не превышает значения 1/2. Таким образом, получаем следующие ограничения для упругих постоянных изотропного материала:    Предельное значение приводит к предельному значению , что соответствует несжимаемому материалу ( при ). В заключение выразим из соотношений упругости (5) напряжения через деформации. Запишем первое из соотношений (5) в виде С использованием равенства (9) будем иметь откуда Аналогичные соотношения можно вывести для и . В результате получим (10) Здесь использовано соотношение (8) для модуля сдвига. Кроме того, введено обозначение   ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ УПРУГОЙ ДЕФОРМАЦИИ    Рассмотрим вначале элементарный объем dV=dxdydz в условиях одноосного напряженного состояния (рис. 1). Мысленно закрепим площадку х=0 (рис. 3). На противоположную площадку действует сила . Эта сила совершает работу на перемещении . При увеличении напряжения от нулевого уровня до значения соответствующая деформация в силу закона Гука также увеличивается от нуля до значения , а работа пропорциональна заштрихованной на рис. 4 площади: . Если пренебречь кинетической энергией и потерями, связанными с тепловыми, электромагнитными и другими явлениями, то в силу закона сохранения энергии совершаемая работа перейдет в потенциальную энергию, накапливаемую в процессе деформирования: . Величина Ф=dU / dV называется удельной потенциальной энергией деформации, имеющей смысл потенциальной энергии, накопленной в единице объема тела. В случае одноосного напряженного состояния Рис.3. Расчетная схема энергии деформации   Рис.4. Линейный закон сопротивления      При одновременном действии напряжений , и на главных площадках (т. е. при отсутствии касательных напряжений) потенциальная энергия равна сумме работ, совершаемых силами на соответствующих перемещениях . Удельная потенциальная энергия равна . Рис.5. Расчетная схема сдвигаемой энергии      В частном случае чистого сдвига в плоскости Оху, изображенном на рис. 5, сила совершает работу на перемещении . Соответствующая этому случаю удельная потенциальная энергия деформации равна Подобные соотношения будут иметь место при сдвиге в других плоскостях. В общем случае напряженно-деформированного состояния будем иметь (11)    Если деформации выразить через напряжения с помощью соотношений упругости (5) и (6), то получим эквивалентную (11) форму записи через компоненты тензора напряжений (12)    Выразив напряжения через деформации с использованием соотношений (6) и (10), получим еще одну форму записи для Ф — через компоненты тензора деформаций    Еще одну форму записи для удельной потенциальной энергии деформации получим, разложив тензоры напряжений и деформаций на шаровые тензоры и девиаторы. В результате (11) можно привести к одной из форм (13)    Здесь введены обозначения для — интенсивности касательных напряжений и — интенсивности деформаций сдвига, которые выражаются через вторые инварианты и девиаторов тензора напряжений и тензора деформаций следующим образом:    Первые слагаемые в (13) соответствуют произведению шаровых составляющих тензоров напряжений и деформаций, а вторые — произведению девиаторных составляющих. Так как шаровой тензор характеризует изменение объема, а девиатор — изменение формы, то соотношения (13) можно интерпретировать как разложение удельной потенциальной энергии на две составляющие: Ф=Ф0+Фф, где Ф0 соответствует изменению объема без изменения формы, а Фф — изменению формы без изменения объема. Первая составляющая будет вычисляться через компоненты тензора напряжений следующим образом: (14)    Удельную потенциальную энергию изменения формы проще найти не через интенсивность касательных напряжений, а как разность Ф — Ф0. Вычитая (14) из (12), после преобразований получим Лекция № 9. Механические характеристики конструкционных материалов Механические характеристики определяются следующими факторами: • веществом, его структурой и свойствами; • конструктивными особенностями элемента, т. е, размерами, формой, наличием концетраторов, состоянием поверхности; • условиями при нагружении: температурой, скоростью, повторяемостью нагрузки и др.    Конструкционные материалы в процессе деформирования вплоть до разрушения ведут себя по разному. Пластичное поведение характеризуется существенным изменением формы и размеров, при этом к моменту разрушения развиваются значительные деформации, не исчезающие после снятия нагрузки. Такие материалы называют пластичными. При хрупком поведении разрушение наступает при весьма малых деформациях, и материалы с такими свойствами называют хрупкими. Однако одни и те же конструкционные материалы, находящиеся в различных условиях деформирования, ведут себя по разному: при одних условиях проявляют себя как пластичные материалы, при других—как хрупкие. В связи с этим, основные макромеханические характеристики материалов — упругость, пластичность, вязкость и др. правильнее относить не к их свойствам, а к состояниям материала.   МЕХАНИЧЕСКИЕ СОСТОЯНИЯ ДЕФОРМИРУЕМЫХ ТЕЛ    В упругом состоянии деформации обратимы, и вся энергия, затраченная на деформирование, при разгрузке возвращается (диссипация энергии отсутствует). Для любого твердого тела процесс деформирования начинается с упругой деформации. Изотропное тело имеет две константы упругости— модуль упругости Е и коэффициент Пуассона . Для анизотропных тел число упругих констант в общем случае равно 21. Из основных констант упругости можно получить их производные—модуль сдвига G, модуль объемной реформации К и постоянную Ламе .    Вязкое сопротивление — в некотором смысле противоположно упругому — работа внешних сил, уравновешенных силами вязкого сопротивления, полностью рассеивается в виде тепла. Вязкое сопротивление определяется величиной касательной силы, необходимой для поддержания ламинарного скольжения слоев, или течения с определенной скоростью. Таким образом вязкость можно определить как сопротивление течению.    Представление о вязкоупругой деформации дает поведение моделей, сочетающих свойства вязкости и упругости в такой последовательности: при нагружении тела в нем возникает мгновенная упругая деформация, подчиняющаяся закону Гука; далее при том же максимальном напряжении наблюдается вязкая деформация, подчиняющаяся закону Ньютона.    Наиболее распространенными в теории линейной вязко-упругости являются реологические модели Максвелла и Фойгта, дающие связь между напряжениями и деформациями и скоростями их изменения: — модель Максвелла, — модель Фойгта, тде — коэффициент вязкости.    Пластическое состояние—характеризуется наличием остаточных деформаций, фиксируемых после снятия внешних нагрузок. Объем тела при пластической деформации не изменяется; условие постоянства объема записывается в виде , (эксперименты показывают, что изменение объема не превышает 0,5%).    В случае, когда все напряжения изменяются пропорционально одной из составляющих, в процессе пластической деформации направления главных деформаций совпадают с направлениями главных нормальных напряжений, направления максимальных сдвигов — с направлениями максимальных касательных напряжений, а главные направления девиатора напряжений — с главными направлениями девиатора деформаций.    Одной из распространенных моделей поведения материала при упруго-пластических деформациях является модель пластичности, основанная на деформационной теории Генки—Ильюшина, описываемая уравнениями: Здесь — средняя деформация, — среднее напряжение,     — безразмерный коэффициент, называемый параметром пластичности (с точностью до множителя он совпадает с интенсивностью касательных напряжений). При эта модель описывает поведение упругого материала.    Высокоэластическое состояние — наиболее характерно для полимеров; особенностями этого состояния являются большая изменяемость формы и деформирование без изменения объема. Для материалов, находящихся в высокоэластическом состоянии, наблюдается существенная зависимость их свойств от длительности и скорости нагружения, температуры и т. д.    Состояние разрушения — состояние, при котором за счет интенсивного развития трещин в материале тела начинается нарушение его сплошности и непрерывности. Физический процесс разрушения материала представляется в виде двух основных стадий — стадии рассеянных разрушений (зарождение и развитие микроскопических трещин) и стадии развития магистральной трещины. Очаги зарождения микротрещин распределены по всему объему материала, находящегося в однородном напряженном состоянии, достаточно равномерно. Относительная длительность первой и второй стадии разрушения зависит от свойств материала, характера напряженного состояния и условий нагружения.   ДИАГРАММЫ УПРУГО-ПЛАСТИЧЕСКОГО ДЕФОРМИРОВАНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ    Основным опытом для определения механических характеристик конструкционных материалов является опыт на растяжение призматического образца центрально приложенной силой, направленной по продольной оси; при этом в средней части образца реализуется однородное напряженное состояние. Форма, размеры образца и методика проведения испытаний определяются соответствующими стандартами, например, ГОСТ 34643—81, ГОСТ 1497-73. По результатам испытаний строится зависимость между напряжениями и деформациями , которая называется диаграммой деформирования. Опыты на растяжение образцов выявляют некоторые общие свойства конструкционных материалов—свойства упругости и пластичности. На рис. 1 показаны типичные кривые деформирования при растяжении образцов из материала сталь 30 и сталь 40Х.    Если напряжения не превышают — предела пропорциональности (точка / на диаграмме), и зависимость между напряжениями и деформациями линейна, то она описывается законом Гука , где Е—модуль продольной упругости материала. Размерность модуля упругости—Н/м2 (Паскаль). Значение модуля упругости Е на кривой деформирования численно равно тангенсу угла наклона линейного участка: . Таким образом, величину Е можно рассматривать как характеристику упругого сопротивления или как характеристику интенсивности- нарастания напряжения с увеличением деформации. Физический смысл коэффициента Е определяется как напряжение, необходимое для увеличения длины образца в два раза. Такое толкование довольно искусственно, поскольку величина упругого удлинения у большинства твердых тел редко достигает даже 1%. Рис.1. Характерные диаграммы растяжения      Напряжения, являющиеся верхней границей проявления чисто упругих деформаций, соответствуют точке 2 диаграммы и называются пределом упругости .    Точка 3 диаграммы характерна тем, что при достижении напряжениями величины ( —предел текучести), дальнейшее удлинение образца (для малоуглеродистых сталей) происходит практически без увеличения нагрузки. Это явление носит название текучести, а участок диаграммы, расположенный непосредственно правее точки 3, называется площадкой текучести. При этом полированная поверхность образца мутнеет, докрывается ортогональной сеткой линий (линии Чернова—Людерса), расположенных под углом 45o к продольной оси образца—по направлению плоскостей действия максимальных касательных напряжений.    У многих конструкционных материалов площадка текучести не выражена столь явно, как у малоуглеродистых сталей. Для таких материалов вводится понятие условного предела текучести ; это напряжение, которому соответствует остаточная (пластическая) деформация, равная s %. Обычно принимается s = 0,2%.    После площадки текучести для дальнейшего увеличения деформации необходимо увеличение растягивающей силы. Материал снова проявляет способность сопротивляться деформации; участок за площадкой текучести (до точки 4) называется участком упрочнения. Точка 4 соответствует максимальной нагрузке, выдерживаемой образцом. Соответствующее напряжение называется временным сопротивлением (или пределом прочности ). Дальнейшая деформация образца происходит без увеличения или даже с уменьшением нагрузки вплоть до разрушения (точка 5). Точке 4 на диаграмме соответствует начало локального уменьшения размеров поперечного сечения образца, где, в основном, сосредоточивается вся последующая пластическая деформация.    Диаграмма, приведенная на рис.1, является диаграммой условных напряжений, условность состоит в том, что все силы относились к F0 — первоначальной площади поперечного сечения образца; в действительности же при растяжении площадь поперечного сечения образца уменьшается. Если учитывать текущее значение площади поперечного сечения при определении напряжений, то получим диаграмму истинных напряжений (рис. 2). Рис.2. Диаграмма истинных напряжений      Если в некоторый момент нагружения (точка А на рис. 1) прекратить нагружение и снять нагрузку, то разгрузка образца пойдет по линии АВ, параллельной линейному участку диаграммы 0 — 1. При этом полная деформация в точке А равна: где — упругая деформация, — пластическая (остаточная деформация). Уравнение это справедливо для любой точки диаграммы.    После того как материал испытал воздействие осевого усилия одного знака (например, растяжение) в области пластических деформаций сопротивляемость этого материала пластической деформации при действии сил другого знака (сжатие) понижается. Это явление носит название эффекта Баушингера.    При растяжении образца происходит не только увеличение его длины, но и уменьшение размеров поперечного сечения, т. е. в упругой области деформация в поперечном направлении , где — деформация в продольном направлении, — коэффициент Пуассона. Для изотропных материалов значения коэффициента Пуассона находятся в пределах .   Таблица 1. Механические характеристики некоторых материалов Примечание. В знаменателе указана соответствующая характеристика при сжатии».    Для сталей различных марок Е = 195-206 ГПа, G = 79-89 ГПа, = 0,23-0,31, для сплавов алюминия Е = 69-71 ГПа, G = 26-27 ГПа, = 0,30-0,33. Упругие свойства некоторых материалов даны в табл. 3.1. Характеристиками пластичности материала являются относительное удлинение и относительное сужение при разрыве: где l0, F0 — длина рабочей части образца и площадь поперечного сечения до деформации; lк — длина рабочей части образца после разрыва; F0 — конечная площадь поперечного сечения в шейке образца после разрыва.    По величине относительного удлинения при разрыве проводится разделение состояния материалов на пластичное и хрупкое. Материалы, имеющие к моменту разрушения достаточно большие значения , относят к пластическим материалам; к хрупким относят материалы с относительным удлинением . Оценка пластических свойств материала может быть проведена по такой характеристике, как ударная вязкость — KC=A/F, где А — работа, затрачиваемая на ударное разрушение образца, Дж (или ), F — площадь поперечного сечения образца в месте концентратора, м2 (или см2),    Работа А деформации при разрушении образца может быть определена по диаграмме растяжения . Так, если первоначальная длина образца l0, то работа деформации, совершаемая силой Р на перемещении и: где uк — перемещение в момент, предшествующий разрушению. Тогда по зависимости и , находим , где — площадь диаграммы деформирования (работа деформации на единицу объема материала). Для сталей КС=50—100 Н м/см2. Материалы с ударной вязкостью КС < 30 Н м/см2 относят к числу хрупких.    Некоторые пластичные материалы в районе площадки текучести обнаруживают особенность (например титан), называемую «зубом текучести»; для таких материалов вводится понятие верхнего и нижнего предела текучести .    Экспериментальное изучение свойств материалов при сжатии проводится на коротких образцах с тем, чтобы исключить возможность искривления образца. Для пластичных материалов характер диаграммы при сжатии примерно до возникновения текучести такой же, как и при растяжении. В процессе деформации сжатия образец укорачивается; при этом размеры поперечного сечения увеличиваются. Из-за трения между опорными плитами нагружающего устройства и торцевыми поверхностями образца он принимает бочкообразную форму. Для ряда пластичных материалов обнаружить напряжение, аналогичное временному сопротивлению при растяжении, не удается, так.как образец сплющивается.    Хрупкие материалы проявляют значительно лучшую способность сопротивляться деформациям сжатия, чем деформациям растяжения; для них разрушающее напряжение при сжатии превышает предел прочности при растяжении в несколько раз. Разрушение хрупких материалов при сжатии происходит за счет образования трещин. Лекция № 10. Влияние различных факторов на механические характеристики материалов    Зависимость механических характеристик конструкционных материалов от их химического состава, внешних условий и условий нагружения весьма многообразна; отметим наиболее существенные, характерные для типичных условий эксплуатации конструкций.    Влияние содержания углерода. Введение различных легирующих добавок в металлы позволяет значительно повысить прочностные характеристики сплавов. На рис. 1 показано влияние процентного содержания углерода на механические свойства конструкционной стали. Как видно, с увеличением содержания углевода, временное сопротивление повышается в несколько раз; однако при этом значительно ухудшаются пластические свойства; относительное удлинение и относительное сужение при разрыве уменьшаются. Рис.1. Влияние процентного содержания углерода      Влияние температуры окружающей среды. Повышенные температуры оказывают существенное влияние на такие механические характеристики конструкционных материалов, как ползучесть и длительная прочность. Ползучестью называют медленное непрерывное возрастание пластической (остаточной) деформации под воздействием постоянных нагрузок. Длительной прочностью называется зависимость разрушающих напряжений (временного сопротивления) от длительности эксплуатации. Свойства ползучести и длительной прочности проявляются у углеродистых сталей при Т >300oС, для легированных сталей при Т>350oС. для алюминиевых сплавов при Т>100oС. Некоторые материалы проявляют эти свойства и при обычных температурах.    Мерой оценки ползучести материала является предел ползучести — напряжение, при котором пластическая деформация за определенный промежуток времени достигает заданной величины. В некоторых случаях сопротивление ползучести оценивается величиной скорости деформации по прошествии заданного времени. При обозначении предела ползучести указывается величина деформации, время и температура испытаний. Например, для жаропрочного сплава ХН77ТЮР при температуре 700oС за время 100 часов и деформации ползучести 0,2% предел ползучести составляет 400 МПа: .    Ползучесть сопровождается релаксацией напряжений — самопроизвольным уменьшением напряжений с течением времени при неизменной деформации. Скорость релаксации напряжений возрастает при повышении температуры. Мерой скорости релаксации служит время релаксации—промежуток времени, в течение которого напряжение уменьшается по сравнению с начальным значением в е=2,718 раза.    Прочность материала при повышенных температурах оценивается пределом длительной прочности — напряжением, при котором материал разрушается не ранее заданного времени. При обозначении предела длительной прочности указывается продолжительность нагружения и температура испытания. Так, для сплава ХН77ТЮР при температуре 700oС и времени 1000 часов предел длительной прочности составляет . При кратковременных испытаниях для этого же сплава при температуре 700oС пределы прочности и текучести соответственно равны: .    Влияние повышенных температур на характеристики прочности и пластичности можно проследить на рис. 2 и 3, где представлены осредненные результаты экспериментов для 1—углеродистой стали, содержащей 0,15% углерода; 2—0,40% углерода, 3—хромистой стали. Прочность углеродистых сталей с повышением температуры до 650—700oС снижается почти в десять раз. Наиболее резкое снижение наблюдается для алюминиевых сплавов. Наибольшими значениями при высоких температурах обладают литые жаропрочные сплавы, содержащие 70—80% никеля. Снижение пределов текучести с повышением температуры происходит примерно так же, как и снижение . Для углеродистых сталей характерным является ухудшение пластических свойств (охрупчивание) при температурах около 300oС (кривая 2 на рис. 3). Рис.2. Влияние температуры на упругие свойства   Рис.3. Влияние температуры на пластические свойства      Влияние температур на упругие свойства. Температурный коэффициент линейного расширения и температурный коэффициент модуля упругости связаны между собой соотношением или где r и m — постоянные, характеризующие параметры кристаллической решетки. На рис. 4 приведена зависимость безразмерного модуля упругости Е/Е0 некоторых конструкционных материалов от температуры (E0— модуль упругости материала при обычной температуре): 1 — нержавеющая сталь; 2 — алюминиевые сплавы, 3 — углеродистые стали, 4 — титановые сплавы.    Для сталей с повышением температуры испытаний с 25 до 450oС модули упругости Е и G уменьшаются на 20—40%, при этом, начиная с 300—400oС наблюдается расхождение между значениями модулей, определенными при статических и динамических испытаниях.    Изменение модулей упругости при малый колебаниях температуры (от –50 до +50oС) незначительно и им обычно пренебрегают. Рис.4. Зависимость модуля упругости от температуры Лекция № 11. Основные понятия теории надежности конструкций ПОСТАНОВКА ЗАДАЧ ТЕОРИИ НАДЕЖНОСТИ    Согласно ГОСТ 27.002—89 «Надежность в технике. Термины и определения» надежность конструкции есть свойство сохранять во времени способность к выполнению требуемых функций в заданных режимах. Одним из основных понятий Теории надежности конструкций является понятие предельного состояния. Условие прочности по существу есть условие обеспечения прочностной надежности.    Основной особенностью реальных условий эксплуатации машин и конструкций является случайный характер взаимодействия с окружающей средой. Это проявляется в том, что мы не можем достоверно предвидеть все типы внешних нагрузок и их величины, которые могут встретиться в процессе эксплуатации. Кроме того, источником неопределенности могут быть случайные свойства материалов. Например, предельное напряжение , входящее в условие прочности, по своей природе является случайным. Его величина зависит от многих факторов: марки материала, технологии изготовления, размеров детали или конструкции, условий эксплуатации и др. Случайный характер механических свойств материалов наглядно проявляется при испытаниях, обнаруживающих значительный разброс экспериментальных данных. Источник неопределенности связан также с разбросом размеров при изготовлении конструкций: в принципе невозможно выдержать абсолютно точно геометрические параметры конструкции, при их изготовлении допускаются некоторые отклонения. В случае одномерного напряженного состояния (1) напряжение , зависящее от внешних нагрузок, при определенных условиях может принять довольно большое значение, а предельное значение может оказаться малым, так что это неравенство нарушится. Если стечение обстоятельств, приводящее к нарушению условия прочности, редкое событие, то приходим к вероятностной трактовке условия прочности с позиций теории надежности. Вероятностью называется числовая характеристика степени возможности наступления некоторого события в определенных многократно воспроизводимых условиях. Вероятность события А можно оценить на основе опытных данных. Если проводится достаточно большое число опытов N, в которых событие Л появилось NA раз, то можно считать, что вероятность появления этого события равна P(A)=NА/N.    Вероятность как мера возможности наступления события удовлетворяет условиям , причем значение Р=0 соответствует невозможному событию, а значение Р=1 — достоверному событию.    Вероятность события, заключающегося в выполнении условия (4.1) Р() в теории надежности называется вероятностью безотказной работы. Вместо условия прочности (1) записывается условие Р()=Р*, (2) где Р* —заданное достаточно высокое значение вероятности, которое называется нормативной вероятностью безотказной работы. В этом случае говорят, что условие прочности обеспечено с вероятностью Р*.   РАСЧЕТНЫЕ НАГРУЗКИ, КОЭФФИЦИЕНТЫ ЗАПАСА    Условие прочности (1) записано через напряжения, которые вычисляются через внешние нагрузки, приложенные к конструкции. Пусть внешние нагрузки определены с точностью до одного параметра S, а напряжение связано с этим параметром зависимостью . Тогда условие прочности (1) можно записать через внешние нагрузки S < R (3)    Здесь через R обозначено предельное значение нагрузки, т.е. такое ее значение, которое приводит к предельному состоянию .    Величина R, зависящая от свойств материала и условий нагружения, называется несущей способностью или сопротивлением. При заданном значении S отношение называется коэффициентом запаса. Он обозначает, что сколько раз нужно увеличить нагрузку, чтобы достичь предельного состояния. Вместо условия прочности (2) можно записать эквивалентное условие n > 1 (4)    Если нагрузка и свойства материала являются случайными, то условия прочности (3) и (4) теряют смысл, их нужно заменить вероятностными условиями типа (2): P(S 1)=P*. При этом коэффициент запаса п также будет случайным.    Практически расчет на прочность с учетом случайного характера внешних нагрузок и случайных свойств материала проводится следующим образом. Вводится некоторое характерное значение нагрузки [S]. Это значение, называемое допускаемым или нормативным значением, можно найти из условия P(S<[S])=[PS], (5) где [PS] —; некоторое значение вероятности, называемое обеспеченностью. Аналогично вводится нормативное значение [R] несущей способности P(R>{R]=[PR]. (6) Отношение [n]=[R]/[S] (7) называется нормативным коэффициентом запаса. Этот коэффициент зависит от условий нагружения, от свойств материалов, условий работы конструкции, степени ее ответственности и ряда других факторов. Такой коэффициент назначается, исходя из многолетнего опыта эксплуатации конструкций, и для каждого типа конструкций задается нормативно-технической документацией.    В качестве нормативных значений [S] и [R] можно выбрать средние значения соответствующих случайных величин где Sj и Rj экспериментально полученные значения случайных величин в серии из N опытов. Однако в действующих нормах, в частности, строительных, нормативные значения не совпадают со средними значениями, а сдвинуты в сторону более опасных значений, что связано со значительным разбросом опытных данных около средних значений. Для нагрузки принимается несколько большее значение, а для несущей способности — меньшее где коэффициенты и находятся из уравнений (5) и (6). Таким образом, нормативный коэффициент запаса (7) вычисляется через средние значения следующим образом:    С учетом случайного характера внешних нагрузок и сопротивлений условие прочности (3) заменяется следующим условием SP < RP. Здесь SР —; достаточно редко встречающееся в реальных условиях эксплуатации высокое значение нагрузки, RР —; также достаточно редко встречающееся низкое значение несущей способности. Эти значения называются расчетными. Они находятся из уравнений (8) (9)    В правой части уравнений содержатся нормативные значения вероятности безотказной работы, которые близки к единице (0,95; 0,99; 0,999;...).    Расчетные значения нагрузок и несущей способности можно выразить через средние значения этих величин следующим образом: где коэффициенты kS >1 и kP < 1 находятся из решения уравнений (8) и (9). Расчетные значения связаны с соответствующими нормативными значениями соотношениями SP = kп[S], RP = ko[R]. Коэффициент называется коэффициентом однородности (меньше единицы). Другой коэффициент, учитывающий случайный характер несущей способности, называется коэффициентом однородности (меньше единицы). Это условие можно заменить равенством SP=RP/m, где коэффициент m >1 учитывает условия работы конструкции, степень ее ответственности. С учетом обозначения (7) для нормативного коэффициента запаса получим формулу, учитывающую случайные свойства нагрузки и несущей способности, а также степень ответственности конструкции [n] = mkп / kо.   РАСЧЕТЫ ПО ДОПУСКАЕМЫМ НАГРУЗКАМ И ПО ДОПУСКАЕМЫМ НАПРЯЖЕНИЯМ    Если пренебречь случайным разбросом прочностных свойств материала конструкции, то расчетное и нормативное значения, а также среднее значение несущей способности R совпадают RP = [R] = = R, а уравнение (7) позволяет получить выражение нормативной или допускаемой нагрузки через нормативный коэффициент запаса [S] = R / [n]. При этом параметр несущей способности R связан с предельным значением напряжения. Если на заданную конструкцию действует фиксированная неслучайная нагрузка S, то соотношение NS = R / S определяет коэффициент запаса по нагрузке. При этом условие прочности можно переписать следующим образом S < [S]. После подстановки условие прочности примет вид nS > [n] Переход от нагрузок к вызываемым этими нагрузками напряжениям производится по ранее описанным соотношениям. Отношение называется коэффициентом запаса по напряжениям. С учетом (4) и (6) можно получить связь между коэффициентами запаса по нагрузкам и по напряжениям Рис.1. Вариабельность коэффициентов запаса      В общем случае полученные коэффициенты запаса не совпадают, что видно из рис. 1. Равенство этих коэффициентов возможно только в том случае, когда зависимость между напряжениями и нагрузкой линейна. При нелинейной зависимости коэффициент теряет ясный физический смысл как число, на которое нужно умножить значение параметра внешней нагрузки, чтобы достичь предельного состояния. По аналогии можно ввести допускаемое напряжение Расчет по допускаемым напряжениям в общем случае дает результаты, отличные от расчетов по допускаемым нагрузкам. Эти результаты совпадают только в случае линейных зависимостей между напряжениями и нагрузкой.    Следует отметить, что приведенные рассуждения относятся к понятию предельного состояния в точке, которое нужно отличать от предельного состояния конструкции. Предельное состояние в точке еще не означает потерю несущей способности конструкции. Пусть предельное состояние конструкции будет достигнуто при достижении параметром нагрузки S предельного значения R*. Тогда локальное условие прочности нужно заменить условием S < R*.    Расчеты с использованием этого условия носят название расчетов по предельному состоянию для конструкции. При этом говорят о конструкционной прочности в отличие от прочности материала, характеризуемой локальным пределом прочности или R. Конструкционная прочность зависит не только от прочностных свойств материала, но и от масштабного фактора, конструктивной формы, типа напряженного состояния, условий взаимодействия с окружающей средой и ряда других факторов. Лекция № 12. Прочность и перемещения при центральном растяжении или сжатии НАПРЯЖЕНИЯ ПРИ РАСТЯЖЕНИИ (СЖАТИИ) ПРИЗМАТИЧЕСКИХ СТЕРЖНЕЙ. РАСЧЕТ НА ПРОЧНОСТЬ    Переходя к изучению введенных основных видов деформации стержней, ограничимся рассмотрением стержней постоянного поперечного сечения с прямолинейной осью, т. е. призматических стержней. Начнем с деформации растяжения (сжатия).    Напомним, что под растяжением (сжатием) понимают такой вид деформации стержня, при котором в его поперечном сечении возникает лишь один внутренний силовой фактор — продольная сила Nz. Поскольку продольная сила численно равна сумме проекций, приложенных к одной из отсеченных частей внешних сил на ось стержня (для прямолинейного стержня она совпадает в каждом сечении с осью Oz), то растяжение (сжатие) имеет место, если все внешние силы, действующие по одну сторону от данного поперечного сечения, сводятся к равнодействующей, направленной вдоль оси стержня (рис. 1). Одна и та же продольная сила Nz при действии на различные части стержня (левую или правую) имеет противоположные направления. Знак Nz зависит от характера вызываемой ею деформации. Продольная сила считается положительной, если вызывает растяжение элемента (рис. 2, а), и она отрицательна, если вызывает сжатие (рис. 2,б). Рис.1. Расчетная схема Рис.2. а) Растяжение и б) сжатие      Для того, чтобы сформулировать предпосылки теории растяжения (сжатия) призматического стержня, обратимся к эксперименту. Представим себе стержень, изготовленный из какого-либо податливого материала (например, резины), на боковую поверхность которого нанесена система продольных и поперечных рисок (рис. 3, а). Эта ортогональная система рисок остается таковой и после приложения растягивающей нагрузки (рис. 3, б). Поскольку поперечные риски являются следами поперечных сечений на поверхности стержня и остаются прямыми и перпендикулярными к оси стержня то это свидетельствует о выполнении гипотезы плоских сечений (Бернулли). С учетом гипотезы об отсутствии поперечного взаимодействия продольных волокон приходим к выводу, что деформация растяжения стержня сводится к одноосному растяжению его продольных волокон, и в поперечном сечении стержня возникают лишь нормальные напряжения а (рис. 4), индекс г у которых опускаем. Ортогональность продольных и поперечных рисок свидетельствует также об отсутствии сдвигов, а, следовательно, и связанных с ними касательных напряжений т в поперечных и продольных сечениях стержня. Рис.3. Модель растянутого стержня Рис.4. Связь напряжения и усилия      Тогда продольная сила Nz равная сумме проекции внутренних сил, действующих в данном поперечном сечении площадью F (рис. 4) очевидно будет равна .    Это соотношение является уравнением равновесия статики, связывающим продольную силу Nz, и нормальное напряжение , которое в общем случае является функцией координат х и у и поэтому не может быть найдено из одного лишь 1 уравнения статики. Таким образом, задача определения напряжений даже в самом простом случае деформирования стержня (растяжении или сжатии) оказывается статически неопределимой.    Необходимое для решения этой задачи дополнительное уравнение вытекает из гипотезы плоских сечений. Поскольку поперечные сечения стержня, оставаясь плоскими и перпендикулярными к оси стержня, в процессе деформирования лишь поступательно перемещаются вдоль оси стержня (что приводит к одинаковому удлинению всех продольных волокон), то приходим к уравнению =const, из которого ввиду однозначности связи и (для линейно-упругого материала это—закон Гука: .) вытекает, что Решая совместно уравнения получим, что или    Таким образом, при растяжении (сжатии) призматического стержня нормальные напряжения равномерно распределены по поперечному сечению, а касательные напряжения в сечениях отсутствуют, что является следствием гипотезы плоских сечений. Указанное, несмотря на, казалось бы, очевидность и простоту, является фундаментальным результатом, справедливым, строго говоря, лишь для призматического стержня. Однако в инженерной практике его используют и для приближенной оценки нормальных напряжений в стержнях переменного сечения. При этом, чтобы погрешность формулы была невелика, необходимо, чтобы площадь поперечного сечения стержня изменялась достаточно плавно вдоль его оси.    Условие прочности при растяжении (сжатии) призматического стержня для стержня из пластического материала (т. е. материала, одинаково работающего на растяжение и сжатие) будет иметь вид: (1) где —допускаемое напряжение. Напряжение в условии (1) подставляется по модулю, так как знак в этом случае роли не играет. Для стержней из хрупких материалов, неодинаково сопротивляющихся растяжению и сжатию, знак напряжения имеет принципиальное значение, и условие прочности приходится формулировать отдельно для растяжения и сжатия где и —напряжения растяжения и сжатия, а и — ответствующие им допускаемые напряжения.    В практике инженерных расчетов, исходя из условия прочности, решаются три основные задачи механики материалов конструкций. В применении к случаю растяжения (сжатия) призматического стержня эти задачи формулируются следующим образом.    Проверка прочности (поверочный расчет). Этот расчет проводится, если нагрузка (в нашем случае ее представляет Nz), сечение стержня F и его материал заданы. Необходимо убедиться, что выполняется условие прочности Проверочный расчет заключается в том, что определяется фактический коэффициент запаса прочности п и сравнивается с нормативным коэффициентом запаса [n]: где — предельное (или опасное) напряжение, т. е. напряжение, вызывающее отказ элемента конструкции (напомним, что, например, для стержня из пластичного материала это—предел текучести или условный предел текучести ).    Подбор сечения (проектный расчет). В этом расчете по Заданной нагрузке (Nz) определяются размеры поперечного сечения стержня (F) из заданного материала ( дано). Минимальное значение F получим, если в условии прочности (1) принять знак равенства: Определение допускаемой нагрузки, то есть максимального значения нагрузки, которое допускает данный элемент конструкции (F и даны) при выполнении условия прочности.   ПОНЯТИЕ О КОНЦЕНТРАЦИИ НАПРЯЖЕНИЙ, ПРИНЦИП СЕН-ВЕНАНА    Даже для призматического стержня равномерное распределение напряжений по поперечному сечению не всегда имеет место. Так, отклонения от равномерного распределения напряжений наблюдаются в окрестности сечений, содержащих вырезы, выточки, отверстия, трещины, в местах резкого изменения поперечного сечения, а также в местах приложения сосредоточенных сил и т. п. Неравномерное распределение напряжений в указанных местах является следствием искажения плоскостей поперечных сечений или их депланации.    Поясним это явление на примере подверженной растяжению полосы из податливого материала с круговым отверстием, на поверхности которой нанесены продольные и поперечные риски (рис. 5, а). В зоне отверстия имеет место депланация поперечных сечений, вызванная неравномерным растяжением продольных волокон (рис.5, б). При этом наибольшие удлинения и соответственно напряжения max получают волокна возле отверстия. Такое местное увеличение напряжений возле вырезов, выточек, отверстий и т. п., а также в местах приложения сосредоточенных сил, называется у концентрацией напряжений, а источники концентрации напряжений (вырезы, выточки, отверстия и т. п.) получили название концентраторов напряжений. Рис.5. Концентрация напряжений: а) исходное состояние, б) деформированное состояние, в) распространение напряжений      Рассмотренными методами механики деформированного тела, опирающимися на гипотезу плоских сечений, задачи о распределении напряжений в зонах концентрации напряжений не решаются. Такие задачи решаются методами теории упругости или исследуются экспериментально. При этом для практических расчетов вводится так называемый теоретический коэффициент концентрации напряжений , представляющий собой отношение максимальных max и номинальных напряжений: , где номинальные напряжения определяются без учета концентрации напряжений. В приведенном примере растяжения полосы с отверстием , a Fnt — площадь поперечного сечения полосы, уменьшенная за счет отверстия («нетто»). Таким образом, играют роль поправочных коэффициентов.    Однако, как показали эксперименты и точные решения задач теории упругости, местные отклонения от равномерного распределения напряжений, вызванные концентрацией напряжений, быстро затухают по мере удаления от сечения с концентратором, и на расстояниях порядка ширины сечения распределение напряжений можно считать практически равномерным (рис. 5, в). Отмеченное свойство является частным случаем широко используемого практически во всех разделах механики деформируемого твердого тела (в том числе и теории упругости) принципа Сен-Венана   ОПРЕДЕЛЕНИЕ ДЕФОРМАЦИЙ И ПЕРЕМЕЩЕНИЙ    Определим упругие деформации стержня предполагая, что изменение его длины при растяжении , называемое абсолютной продольной деформацией или удлинением, мало по сравнению с его первоначальной длиной . Тогда относительная продольная деформация будет равна    Учитывая, что согласно закону Гука для одноосного растяжения (сжатия) , где Е—;модуль продольной упругости материала стержня, а нормальные напряжения определяются по формуле — (в нашем случае Nz=P), для абсолютной деформации получаем (2)    Произведение EF принято называть жесткостью поперечного сечения стержня при растяжении (сжатии), так как удлинение обратно пропорционально EF. Рис.6. Модели продольной и поперечной деформаций      Как показывают эксперименты, при растяжении стержня размеры его поперечного сечения уменьшаются (рис. 6), а при сжатии — увеличиваются. Это явление получило название эффекта Пуассона.    По аналогии с продольной деформацией изменение размеров поперечного сечения (на рис. 6 ) будем называть абсолютной поперечной деформацией, а — относительной поперечной деформацией. Относительные продольная и поперечная деформации, имеющие противоположные знаки, связаны между собой коэффициентом , являющимся константой материала и называемым коэффициентом поперечной деформации или коэффициентом Пуассона: Как известно, для изотропного материала .    Формула (2) для удлинения стержня применима только в случае, когда по длине стержня ни жесткость поперечного сечения, ни продольная сила не изменяются (EF=const, Nz =const). Удлинение стержня со ступенчатым изменением EF и Nz (рис. 7) может быть определено как сумма удлинений ступеней, у которых EF и Nz постоянны: (индекс k у модуля продольной упругости означает, что участки стержня могут быть изготовлены из различных материалов). В случае, когда Nz и EF меняются по длине стержня l непрерывно и их можно считать постоянными лишь в пределах ступеней длиной dz, обобщая формулу эту, получаем    В качестве тестов для практики расчетов определенных интегралов рекомендую воспользоваться системой входных тестов Т-5, указанных в ПРИЛОЖЕНИИ. Рис.7. Ступенчатый брус      С упругими продольными деформациями стержня при растяжении (сжатии) связаны продольные перемещения его сечений. На рис. 8 приведены три случая определения таких перемещений, откуда видно, что перемещения поперечных сечений численно равны удлинениям заштрихованных частей стержня: • перемещение свободного торцевого сечения 1—1 при неподвижном другом торцевом сечении (рис. 8, а) численно равно удлинению стержня; • перемещение промежуточного сечения 2—2 (рис. 8, б) численно равно удлинению части стержня, заключенной между данным сечением и сечением неподвижным; • взаимное перемещение сечений 3—3 и 4—4 (рис, 8, в) численно равно удлинению части стержня, заключенной между этими сечениями. Рис.8. Модели перемещений   НАПРЯЖЕННОЕ СОСТОЯНИЕ ПРИ РАСТЯЖЕНИИ (СЖАТИИ)    Напряженное состояние при растяжении стержня является одноосным (рис. 9, а). Поскольку на поперечных и продольных площадках касательные напряжения не возникают, то эти площадки являются главными. Причем в случае растяжения , а в случае сжатия . Рис.9. Напряженное состояние: а ) исходный элемент, б ) компоненты напряжений      Напряжения на площадках, наклоненных к оси стержня под углом , определяются по формулам для упрощенного плоского напряженного состояния:    Площадки с экстремальными касательными напряжениями (рис. 9, б), как известно, наклонены по отношению к исходным под углами (следует и из формулы для ) и равны .    Именно с действием экстремальных связывается появление на боковой поверхности образца из малоуглеродистой стали, испытываемого на растяжение, линий скольжения, ориентированных под углом к оси образца. На площадках с экстремальными действуют и нормальные напряжения, равные . Лекция № 13. Расчет статически неопределимых систем по допускаемым нагрузкам. Применение к статически определимым системам.    В предыдущем изложении методов расчета мы исходили из основного условия прочности . Это неравенство требует выбора размеров конструкции с таким расчетом, чтобы наибольшее напряжение в самом опасном месте не превосходило допускаемого.    Но можно стать на другую точку зрения. Можно задать условие, чтобы действительная нагрузка на всю конструкцию не превосходила некоторой допускаемой величины. Условие это можно выразить таким неравенством:    За допускаемую нагрузку надо выбрать некоторую часть той нагрузки, при которой конструкция перестанет функционировать правильно, перестанет выполнять свой назначение. Такая нагрузка обычно называется предельной, иногда—разрушающей в широком смысле слова (под разрушением конструкции подразумевают прекращение ее нормальной работы).    В качестве примера возьмем систему из двух стальных стержней АВ и АС, (рис.1), нагруженных силой P. Рис.1. Расчетная схема статически определимой стержневой системы   Рассчитывая эту систему обычным путем, найдем усилия N1 = N2 no формуле: (из равновесия узла А). Отсюда площадь каждого из стержней равна: По способу допускаемых нагрузок имеем:    Введя в качестве коэффициента запаса для конструкции в целом ту же величину k, которая была принята в качестве коэффициента запаса для напряжений, мы получим, что величина Предельной, опасной величиной Pпр будет та, при которой напряжения в стержнях дойдут до предела текучести: Таким образом, допускаемая величина Р равна: Условие прочности принимает вид а учитывая, что , получаем: Отсюда:    Таким образом, расчет по допускаемым нагрузкам привел в данном случае к тем же результатам, что и расчет по допускаемым напряжениям. Это всегда имеет место для статически определимых конструкций при равномерном распределении напряжений, когда материал по всему сечению используется полностью.   Расчет статически неопределимых систем по способу допускаемых нагрузок.    Совсем другие результаты мы получим, если будем применять способ допускаемых нагрузок к статически неопределимым системам, стержни которых изготовлены из материала, обладающего способностью к большим пластическим деформациям, например из малоуглеродистой стали. В качестве примера рассмотрим систему из трех стержней, нагруженных силой Q (рис. 2). Пусть все стержни сделаны из малоуглеродистой стали с пределом текучести . Длины крайних стержней, как и выше, обозначим ; длину среднего . Допускаемое напряжение Рис.2. Расчетная схема однократно статически неопределимой стержневой системы.   Как и раньше, при расчете этой статически неопределимой системы зададимся отношением площадей стержней; примем, что все три стержня будут иметь одинаковую площадь F. Получим: 1. 2. 3. Используя закон Гука, получим: Следовательно: Так как , средний стержень напряжен больше, чем крайние; поэтому подбор площади сечения F надо произвести по формуле: Ту же величину площади надо дать и боковым стержням; в них получается некоторый дополнительный запас. Применим способ допускаемых нагрузок; условием прочности будет:    Что в данном случае следует понимать под предельной нагрузкой конструкции? Так как конструкция выполнена из материала, имеющего площадку текучести, то, по аналогии с простым растяжением стержня из такого материала, за предельную нагрузку следует взять груз, соответствующий достижению состояния текучести для всей конструкции в целом. Назовем эту нагрузку . Пока сила Q не достигла этого значения, для дальнейшей деформации (опускания точки A) требуется возрастание нагрузки. Когда же Q сделается равным , дальнейший рост деформаций будет происходить уже без увеличения нагрузки, — конструкция выйдет из строя.    Для определения величины рассмотрим постепенный ход деформации нашей стержневой системы. Так как средний стержень напряжен сильнее крайних, то в нем раньше, чем в других, напряжение дойдет до предела текучести. Нагрузку, соответствующую этому моменту, обозначим QТ; она будет равна: где — усилие в среднем стержне, соответствующее его пределу текучести.    Напряжения в крайних стержнях, имеющих ту же площадь, в этот момент еще не дойдут до предела текучести, и эти стержни будут упруго сопротивляться дальнейшей деформации. Для того чтобы эта деформация происходила, необходимо дальнейшее увеличение нагрузки до тех пор, пока в крайних стержнях напряжения тоже не дойдут до предела текучести. Лишь тогда будет достигнута предельная грузоподъемность конструкции .    Так как при нагрузке QТ напряжения в среднем стержне дойдут уже до предела текучести , то при дальнейшем возрастании груза они, а стало быть и усилие N3, останутся без увеличения. Наша статически неопределимая система превратится в статически определимую, состоящую из двух стержней АВ и АС и нагруженную в точке А силой Q, направленной вниз, и известным усилием , равным (Рис.3). Рис.3. Эквивалентная статически определимая система   Такая схема работы нашей конструкции будет иметь место, пока    Для иллюстрации хода деформации рассматриваемой конструкции изобразим графически зависимость между силой Q и перемещением f точки А (Рис. 4). Пока опускание точки А равно удлинению среднего стержня и определяется формулой Рис.4. Динамика деформации в зависимости от нагрузочной способности системы      Как только Q будет заключаться в промежутке перемещение точки А должно быть вычислено, как опускание этого узла в системе двух стержней АС и АВ, нагруженных в точке А силой . Так как: и, в свою очередь: Отсюда    Для f12 (на втором участке) получаем уравнение прямой, но уже не проходящей через начало координат. После достижения нагрузкой Q значения напряжения в крайних стержнях достигнут предела текучести, и система будет деформироваться без увеличения нагрузки. График перемещения идет теперь параллельно оси абсцисс.    Для определения предельной грузоподъемности всей системы мы должны для системы двух стержней, нагруженных силой , найти то значение Q, при котором напряжения и в крайних стержнях дойдут до предела текучести. Такая задача решена в предыдущем параграфе; подставляя в выражение (а) § 26 вместо Р величину , получаем: Отсюда Допускаемая нагрузка будет равна а учитывая, что , получаем Окончательно: и Эта величина меньше, чем полученная обычным методом расчета, т. е. При (сталь) получаем: по обычному способу по способу допускаемых нагрузок:    Таким образом, метод расчета по допускаемым нагрузкам позволяет спроектировать статически неопределимую систему из материала, обладающего площадкой текучести, экономичнее, чем при расчете по допускаемым, напряжениям. Это понятно: при способе расчета по допускаемым напряжениям мы считали за предельную нагрузку нашей конструкции величину QТ, при которой до предела текучести доходил лишь материал среднего стержня, крайние же были недонапряжены. При методе расчета по допускаемым нагрузкам предельная грузоподъемность определяется величиной . При нагрузке полностью используется материал всех трех стержней.    Таким образом, новый метод расчета позволяет реализовать скрытые при старом способе запасы прочности в статически неопределимых системах, добиться повышения их расчетной грузоподъемности и действительной равнопрочности всех частей конструкции. Не представит никаких затруднений распространить этот метод на случай, когда соотношение площадей среднего и крайних стержней не будет равно единице.    Изложенные выше теоретические соображения проверялись неоднократно на опыте, причем всегда наблюдалась достаточно близкая сходимость величин предельной нагрузки — вычисленной и определенной при эксперименте. Это дает уверенность в правильности теоретических предпосылок метода допускаемых нагрузок. Лекция № 14. Учет собственного веса при растяжении и сжатии. Подбор сечений с учетом собственного веса (при растяжении и сжатии).    При установлении внешних сил, растягивающих или сжимающих элементы конструкций, мы до сих пор игнорировали собственный вес этих элементов. Возникает вопрос, не вносится ли этим упрощением расчета слишком большая погрешность? В связи с этим подсчитаем величины напряжений и деформаций при учете влияния собственного веса растянутых или сжатых стержней.    Пусть вертикальный стержень (Рис.1, а) закреплен своим верхним концом; к нижнему его концу подвешен груз Р. Длина стержня l, площадь поперечного сечения F, удельный вес материала и модуль упругости Е. Подсчитаем напряжения по сечению АВ, расположенному на расстоянии от свободного конца стержня. а)                  б) Рис.1. Исходная расчетная схема бруса а) и б) — равновесие нижней отсеченной части.      Рассечем стержень сечением АВ и выделим нижнюю часть длиной с приложенными к ней внешними силами (Рис.1, б) — грузом Р и ее собственным весом . Эти две силы уравновешиваются напряжениями, действующими на площадь АВ от отброшенной части. Эти напряжения будут нормальными, равномерно распределенными по сечению и направленными наружу от рассматриваемой части стержня, т. е. растягивающими. Величина их будет равна:    Таким образом, при учете собственного веса нормальные напряжения оказываются неодинаковыми во всех сечениях. Наиболее напряженным, опасным, будет верхнее сечение, для которого достигает наибольшего значения l; напряжение в нем равно: Условие прочности должно быть выполнено именно для этого сечения: Отсюда необходимая площадь стержня равна:    От формулы, определяющей площадь растянутого стержня без учета влияния собственного веса, эта формула отличается лишь тем, что из допускаемого напряжения вычитается величина .    Чтобы оценить значение этой поправки, подсчитаем ее для двух случаев. Возьмем стержень из мягкой стали длиной 10 м; для него , а величина . Таким образом, для стержня из мягкой стали поправка составит т. е. около 0,6%. Теперь возьмем кирпичный столб высотой тоже 10 м; для него , а величина Таким образом, для кирпичного столба поправка составит , т.е. уже 15%.    Вполне понятно, что влиянием собственного веса при растяжении и сжатии стержней можно пренебрегать, если мы не имеем дела с длинными стержнями или со стержнями из материала, обладающего сравнительно небольшой прочностью (камень, кирпич) при достаточном весе. При расчете длинных канатов подъемников, различного рода длинных штанг и высоких каменных сооружений (башни маяков, опоры мостовых ферм) приходится вводить в расчет и собственный вес конструкции.    В таких случаях возникает вопрос о целесообразной форме стержня. Если мы подберем сечение стержня так, что дадим одну и ту же площадь поперечного сечения по всей длине, то материал стержня будет плохо использован; нормальное напряжение в нем дойдет до допускаемого лишь в одном верхнем сечении; во всех прочих сечениях мы будем иметь запас в напряжениях, т. е. излишний материал. Поэтому желательно так запроектировать размеры стержня, чтобы во всех его поперечных сечениях (перпендикулярных к оси) нормальные напряжения были постоянны,    Такой стержень называется стержнем равного сопротивления растяжению или сжатию. Если при этом напряжения равны допускаемым, то такой стержень будет иметь наименьший вес.    Возьмем длинный стержень, подверженный сжатию силой Р и собственным весом (Рис.2). Чем ближе к основанию стержня мы будем брать сечение, тем больше будет сила, вызывающая напряжения в этом сечении, тем большими придется брать размеры площади сечения. Стержень получит форму, расширяющуюся книзу. Площадь сечения F будет изменяться по высоте в зависимости от , т. е. . Установим этот закон изменения площади в зависимости от расстояния сечения от верха стержня. Рис.2. Расчетная схема бруса равного сопротивления   Площадь верхнего сечения стержня определится из условия прочности: и где — допускаемое напряжение на сжатие; напряжения во всех прочих сечениях стержня также должны равняться величине    Чтобы выяснить закон изменения площадей по высоте стержня, возьмем два смежных бесконечно близких сечения на расстоянии от верха стержня; расстояние между сечениями ; площадь верхнего назовем , площадь же смежного .    Приращение площади при переходе от одного сечения к другому должно воспринять вес элемента стержня между сечениями. Так как на площади он должен вызвать напряжение, равное допускаемому , то определится из условия: Отсюда: После интегрирования получаем: При площадь ; подставляя эти значения, имеем: и Отсюда ,    Если менять сечения точно по этому закону, то боковые грани стержня получат криволинейное очертание (Рис.2), что усложняет и удорожает работу. Поэтому обычно такому сооружению придают лишь приближенную форму стержня равного сопротивления, например в виде усеченной пирамиды с плоскими гранями. Приведенный расчет является приближенным. Мы предполагали, что по всему сечению стержня равного сопротивления передаются только нормальные напряжения; на самом деле у краев сечения напряжения будут направлены по касательной к боковой поверхности.    В случае длинных канатов или растянутых штанг форму стержня равного сопротивления осуществляют тоже приближенно, разделяя стержень по длине на ряд участков; на протяжении каждого участка сечение остается постоянным (Рис.3) — получается так называемый ступенчатый стержень. Рис.3. Эквивалентный ступенчатый брус с приближением к модели бруса равного сопротивления      Определение площадей ... при выбранных длинах производится следующим образом. Площадь поперечного сечения первого нижнего участка будет по формуле равна:    Чтобы получить площадь поперечного сечения второго участка, надо нагрузить его внешней силой Р и весом первого участка:    Для третьего участка к внешней силе добавляются веса первого и второго участков. Подобным же образом поступают и для других участков.   Деформации при действии собственного веса.    При определении влияния собственного веса на деформацию при растяжении и сжатии стержней придется учесть, что относительное удлинение различных участков стержня будет переменным, как и напряжение . Для вычисления полного удлинения стержня постоянного сечения определим сначала удлинение бесконечно малого участка стержня длиной , находящегося на расстоянии от конца стержня (Рис.4). Рис.4. Расчетная модель бруса с учетом собственного веса.   Абсолютное удлинение этого участка равно Полное удлинение стержня равно: Величина представляет собой полный вес стержня. Таким образом, для вычисления удлинения от действия груза и собственного веса можно воспользоваться прежней формулой: подразумевая под S внешнюю силу и половину собственного веса стержня. Что же касается деформаций стержней равного сопротивления, то, так как нормальные напряжения во всех сечениях одинаковы и равны допускаемым , относительное удлинение по всей длине стержня одинаково и равно Абсолютное же удлинение при длине стержня l равно: где обозначения соответствуют приведенным на рис.1.    Деформацию ступенчатых стержней следует определять по частям, выполняя подсчеты по отдельным призматическим участкам. При определении деформации каждого участка учитывается не только его собственный вес, но и вес тех участков, которые влияют на его деформацию, добавляясь к внешней силе. Полная деформация получится суммированием деформаций отдельных участков. Лекция № 15. Расчет гибких нитей.    В технике встречается еще один вид растянутых элементов, при определении прочности которых важное значение имеет собственный вес. Это — так называемые гибкие нити. Таким термином обозначаются гибкие элементы в линиях электропередач, в канатных дорогах, в висячих мостах и других сооружениях.    Пусть (Рис.1) имеется гибкая нить постоянного сечения, нагруженная собственным весом и подвешенная в двух точках, находящихся на разных уровнях. Под действием собственного веса нить провисает по некоторой кривой АОВ.    Горизонтальная проекция расстояния между опорами (точками ее закрепления), обозначаемая , носит название пролета.    Нить имеет постоянное сечение, следовательно, вес ее распределен равномерно по ее длине. Обычно провисание нити невелико по сравнению с ее пролетом, и длина кривой АОВ мало отличается (не более чем на 10%) от длины хорды АВ. В этом случае с достаточной степенью точности можно считать, что вес нити равно- мерно распределен не по ее длине, а по длине ее проекции на горизонтальную ось, т. е. вдоль пролета l. Рис.1. Расчетная схема гибкой нити.      Эту категорию гибких нитей мы и рассмотрим. Примем, что интенсивность нагрузки, равномерно распределенной по пролету нити, равна q. Эта нагрузка, имеющая размерность сила/длина, может быть не только собственным весом нити, приходящимся на единицу длины пролета, но и весом льда или любой другой нагрузкой, также равномерно распределенной. Сделанное допущение о законе распределения нагрузки значительно облегчает расчет, но делает его вместе с тем приближенным; если при точном решении (нагрузка распределена вдоль кривой) кривой провисания будет цепная линия, то в приближенном решении кривая провисания оказывается квадратной параболой.    Начало координат выберем в самой низшей точке провисания нити О, положение которой, нам пока неизвестное, очевидно, зависит от величины нагрузки q, от соотношения между длиной нити по кривой и длиной пролета, а также от относительного положения опорных точек. В точке О касательная к кривой провисания нити, очевидно, горизонтальна. По этой касательной направим вправо ось .    Вырежем двумя сечениями — в начале координат и на расстоянии от начала координат (сечение m — n) — часть длины нити. Так как нить предположена гибкой, т. е. способной сопротивляться лишь растяжению, то действие отброшенной части на оставшуюся возможно только в виде силы, направленной по касательной к кривой провисания нити в месте разреза; иное направление этой силы невозможно.    На рис.2 представлена вырезанная часть нити с действующими на нее силами. Равномерно распределенная нагрузка интенсивностью q направлена вертикально вниз. Воздействие левой отброшенной части (горизонтальная сила Н) направлено, ввиду того, что нить работает на растяжение, влево. Действие правой отброшенной части, сила Т, направлено вправо по касательной к кривой провисания нити в этой точке.    Cоставим уравнение равновесия вырезанного участка нити. Возьмем сумму моментов всех сил относительно точки приложения силы Т и приравняем ее нулю. При этом учтем, опираясь на приведенное в начале допущение, что равнодействующая распределенной нагрузки интенсивностью q будет , и что она приложена посредине отрезка . Тогда Рис.2. Фрагмент вырезанной части гибкой нити   , откуда (1)    Отсюда следует, что кривая провисания нити является параболой. Когда обе точки подвеса нити находятся на одном уровне, то Величина в данном случае будет так называемой стрелой провисания. Ее легко определить. Так как в этом случае, ввиду симметрии, низшая точка нити находится посредине пролита, то ; подставляя в уравнение (1) значения и получаем: (2) Из этой формулы находим величину силы Н: (3) Величина Н называется горизонтальным натяжением нити.    Таким образом, если известны нагрузка q и натяжение H, то по формуле (2) найдем стрелу провисания . При заданных и натяжение Н определяется формулой (3). Связь этих величин с длиной нити по кривой провисания устанавливается при помощи известной из математики приближенной формулы) Составим еще одно условие равновесия вырезанной части нити, а именно, приравняем нулю сумму проекций всех сил на ось : Из этого уравнения найдем силу Т — натяжение в произвольной точке    Откуда следует, что сила Т увеличивается от низшей точки нити к опорам и будет наибольшей в точках подвеса — там, где касательная к кривой провисания нити составляет наибольший угол с горизонталью. При малом провисании нити этот угол не достигает больших значений, поэтому с достаточной для практики степенью точности можно считать, что усилие в нити постоянно и равно ее натяжению Н. На эту величину обычно и ведется расчет прочности нити. Если все же требуется вести расчет на наибольшую силу у точек подвеса, то для симметричной нити ее величину определим следующим путем. Вертикальные составляющие реакций опор равны между собой и равны половине суммарной нагрузки на нить, т. е. . Горизонтальные составляющие равны силе Н, определяемой по формуле (3). Полные реакции опор получатся как геометрические суммы этих составляющих: Условие прочности для гибкой нити, если через F обозначена площадь сечения, имеет вид: Заменив натяжение Н его значением по формуле (3), получим:    Из этой формулы при заданных , , и можно определить необходимую стрелу провисания . Решение при этом упростится, если в включен лишь собственный вес; тогда , где — вес единицы объема материала нити, и т. е. величина F не войдет в расчет. Если точки подвеса нити находятся на разных уровнях, то, подставляя в уравнение (1) значения и , находим и : Отсюда из второго выражения определяем натяжение а деля первое на второе, находим: или Имея в виду, что , получаем: или Подставив это значение в формулу определенного натяжения Н, окончательно определяем: (6.15)    Два знака в знаменателе указывают на то, что могут быть две основные формы провисания нити. Первая форма при меньшем значении Н (знак плюс перед вторым корнем) дает нам вершину параболы между опорами нити. При большем натяжении Н (знак минус перед вторым корнем) вершина параболы расположится левее опоры А (Рис.1). Получаем вторую форму кривой. Возможна и третья (промежуточная между двумя основными) форма провисания, соответствующая условию ; тогда начало координат совмещается с точкой А. Та или иная форма будет получена в зависимости от соотношений между длиной нити по кривой провисания АОВ (Рис.1) и длиной хорды АВ.    Если при подвеске нити на разных уровнях неизвестны стрелы провисания и , но известно натяжение Н, то легко получить значения расстояний а и b и стрел провисания, и . Разность h уровней подвески равна: Подставим в это выражение значения и , и преобразуем его, имея в виду, что : откуда а так как то и    Следует иметь в виду, что при будет иметь место первая форма провисания нити, при — вторая форма провисания и при — третья форма. Подставляя значения и в выражения для стрел провисания и , получаем величины и :    Теперь выясним, что произойдет с симметричной нитью, перекрывающей пролет , если после подвешивания ее при температуре и интенсивности нагрузки температура нити повысится до а нагрузка увеличится до интенсивности (например, из-за ее обледенения). При этом предположим, что в первом состоянии задано или натяжение , или стрела провисания (Зная одну из этих двух величин, всегда можно определить другую.)    При подсчете деформации нити, являющейся по сравнению с длиной нити малой величиной, сделаем два допущения: длина нити 'равна ее пролету, а натяжение постоянно и равно Н. При пологих нитях эти допущения дают небольшую погрешность. В таком случае удлинение нити, вызванное увеличением температуры, будет равно где — коэффициент линейного температурного расширения материала нити.    При повышении температуры нить удлиняется. В связи с этим увеличится ее стрела провисания и, как следствие, уменьшится ее натяжение. С другой стороны, из-за увеличения нагрузки, как видно из формулы (3), натяжение увеличится. Допустим, что окончательно натяжение увеличивается. Тогда удлинение нити, вызванное увеличением натяжения, будет, согласно закону Гука, равно: Если окажется меньше, чем то величина будет отрицательной. При понижении температуры будет отрицательной величина .    Таким образом, длина нити во втором ее состоянии будет равна длине при первом ее состоянии с добавлением тех деформаций, которые произойдут от повышения температуры и натяжения: Изменение длины нити вызовет изменение и ее стрелы провисания. Вместо, она станет . Теперь заменим в последнем уравнении и их известными выражениями, а деформации и — также их полученными ранее значениями. Тогда уравнение для S2 примет следующий вид: В этом уравнении заменим и их значениями по формуле (2): и Тогда, после некоторых преобразований, уравнение для расчета натяжения может быть написано в виде: Определив из этого уравнения натяжение , можно найти по формуле (2) и стрелу .    В случае, если при переходе от первого ко второму состоянию нагрузка не изменяется, а изменяется лишь температура, то в последнем уравнении интенсивность заменяется на . В случае, если при переходе от первого ко второму состоянию не изменяется температура, а изменяется лишь нагрузка, то в этом уравнении средний член в квадратной скобке равен нулю. Полученное уравнение пригодно, конечно, и при понижении температуры и уменьшении нагрузки.    В тех случаях, когда стрела провисания не является малой по сравнению с пролетом, выведенные выше формулы, строго говоря, неприменимы, так как действительная кривая провисания нити, цепная линия, будет уже значительно отличаться от параболы, полученной нами благодаря предположению о равномерном распределении нагрузки по пролету нити, а не по ее длине, как то имеет место в действительности.    Точные подсчеты показывают, что значение погрешности в величине натяжения Н, вызванной этим предположением, таково: при отношении погрешность не превосходит 0,3%, при ошибка составляет уже 1,3%, а при погрешность несколько, превосходит 5%. Лекция № 16. Геометрические характеристики плоских сечений. Вычисление моментов инерции и моментов сопротивления для простейших сечений.    Известно, что интеграл вида является моментом инерции сечения относительно нейтральной оси.    Здесь — расстояние элементарной площадки dF от нейтральной оси; суммирование охватывает всю площадь сечения. Покажем в качестве примера вычисление этого интеграла для прямоугольника (Рис.1) высотой h и шириной b. Проведем через его центр тяжести О оси симметрии Oz и Оу. Если внешние силы, действующие на балку, лежат в плоскости Oz, то нейтральной осью будет ось Оу. Найдем относительно этой оси сначала момент инерции, а потом и момент сопротивления площади прямоугольника.    Площадки dF, на которые следует разбить всю площадь сечения, выберем в виде узких прямоугольников шириной b и высотой dz (Рис.1а). Тогда: и интеграл J принимает вид: Чтобы взять интеграл по всей площади прямоугольника, следует z менять от до Тогда Момент сопротивления относительно нейтральной оси Оу мы получим, разделив Jy на    Если необходимо вычислить момент инерции и момент сопротивления прямоугольника относительно оси Oz, то в полученных формулах следовало бы b и h поменять местами: и    Заметим, что сумма произведений не изменится, если мы сдвинем все полоски dF = bdz параллельно самим себе так, что они расположатся в пределах параллелограмма ABCD. Рис.1. Расчетная модель для определения осевого момента инерции прямоугольника.      Иначе, момент инерции параллелограмма относительно оси у равен моменту инерции равновеликого ему прямоугольника    При вычислении момента инерции круга радиуса (Рис.2) также разбиваем площадь на узкие полоски размером вдоль оси Oz; ширина этих полосок b = b(z) тоже будет переменной по высоте сечения. Элементарная площадка Момент инерции равен: Рис.2. Расчетная модель для определения осевого момента инерции кругового сечения.      Так как верхняя и нижняя половины сечения одинаковы, то вычисление момента инерции достаточно провести для одной нижней и результат удвоить. Пределами для изменения z будут 0 и : Введем новую переменную интегрирования — угол (Рис.2); тогда Пределы: при ; при , следовательно, и Для треугольного сечения (Рис.3) момент инерции относительно оси АВ равен ; ,    В последующем будет изложен метод вычисления момента инерции для сечения любой сложной формы относительно любой оси.    На практике из симметричных сечений встречаются чаще всего: для дерева — прямоугольник и круг, для металлов — двутавровое и тавровое сечения. Для прокатных профилей можно пользоваться таблицами ОСТ (сортамент), в которых помещены размеры и Рис.3. Расчетная модель для определения осевого момента инерции сечения треугольного профиля   величины J и W для профилей, выпускаемых заводами.    В балках из металла обычно применяются сложные поперечные сечения, потому что в них материал может быть использован экономичнее, чем в таких сечениях, как прямоугольник и круг.    Так, известно, что валы делают полыми, чтобы удалить ту часть материала, которая слабо работает. Известно также, что при изгибе балок материал около нейтральной оси принимает на себя малые нормальные напряжения и также не может быть использован полностью. Поэтому целесообразнее переделать прямоугольное сечение так, чтобы удалить материал у нейтральной оси и часть его сэкономить, а часть перенести в верхнюю и нижнюю зоны балки, где он будет работать более интенсивно. Так получается из прямоугольного сечения профиль двутавра, обладающего той же прочностью и меньшим весом. Применение двутавра целесообразно при материалах, одинаково сопротивляющихся растяжению и сжатию (большинство металлов).    Сечения в виде тавра, применяются или в случаях, вызываемых специальными конструктивными обстоятельствами, или для таких материалов, как чугун, бетон, у которых сопротивления растяжению и сжатию резко разнятся между собой; последнее обстоятельство требует, чтобы напряжения в крайних волокнах были различными.    Как видно из изложенного, при решении вопроса о наиболее экономичном проектировании сечения следует стремиться к тому, чтобы при одной и той же площади F получить наибольший момент сопротивления и момент инерции. Это ведет к размещению большей части материала подальше от нейтральной оси.    Однако для некоторых сечений можно увеличить момент сопротивления не добавлением, а, наоборот, путем срезки некоторой части сечения, наиболее удаленной от нейтральной оси.    Так, например, для круглого сечения срезка заштрихованных сегментов (Рис.4) несколько увеличивает момент сопротивления, так как при этом мы уменьшаем момент инерции сечения в меньшей степени, чем расстояние до крайнего волокна . Рис.4. Срезка сегментов для увеличения осевого момента сопротивления.   Общий способ вычисления моментов инерции сложных сечений.    При проверке прочности частей конструкций нам приходится встречаться с сечениями довольно сложной формы, для которых нельзя вычислить момент инерции таким простым путем, каким мы пользовались для прямоугольника и круга.    Таким сечением может быть, например, тавр (Рис.5 а) кольцевое сечение трубы, работающей на изгиб (авиационные конструкции) (Рис.5, б), кольцевое сечение шейки вала или еще более сложные сечения. Все эти сечения можно разбить на простейшие, как-то: прямоугольники, треугольники, круги и т.д. Можно показать, что момент инерции такой сложной фигуры является суммой моментов инерции частей, на которые мы ее разбиваем. Рис.5. Сечения типа тавр — а) и кольцо б)   Известно, что момент инерции любой фигуры относительно оси у—у равен: где z—расстояние элементарных площадок до оси у—у.    Разобьем взятую площадь на четыре части: , , и . Теперь при вычислении момента инерции можно сгруппировать слагаемые в подинтегральной функции так, чтобы отдельно произвести суммирование для каждой из выделенных четырех площадей, а затем эти суммы сложить. Величина интеграла от этого не изменится. Наш интеграл разобьется на четыре интеграла, каждый из которых будет охватывать одну из площадей, , и : Каждый из этих интегралов представляет собой момент инерции соответствующей части площади относительно оси у — у; поэтому где — момент инерции относительно оси у — у площади , — то же для площади и т. д.    Полученный результат можно формулировать так: момент инерции сложной фигуры равен сумме моментов инерции составных ее частей. Таким образом, нам необходимо уметь вычислять момент инерции любой фигуры относительно любой оси, лежащей в ее плоскости. Решение этой задачи и составляет содержание настоящей и последующих двух собеседований. Лекция № 17. Моменты инерции относительно параллельных осей.    Задачу — получить наиболее простые формулы для вычисления момента инерции любой фигуры относительно любой оси — будем решать в несколько приемов. Если взять серию осей, параллельных друг другу, то оказывается, что можно легко вычислить моменты инерции фигуры относительно любой из этих осей, зная ее момент инерции относительно оси, проходящей через центр тяжести фигуры параллельно выбранным осям. Рис.1. Расчетная модель определения моментов инерции для параллельных осей.      Оси, проходящие через центр тяжести, мы будем называть центральными осями. Возьмем (Рис.1) произвольную фигуру. Проведем центральную ось Оу, момент инерции относительно этой оси назовем . Проведем в плоскости фигуры ось параллельно оси у на расстоянии от нее. Найдем зависимость между и — моментом инерции относительно оси . Для этого напишем выражения для и . Разобьем площадь фигуры на площадки ; расстояния каждой такой площадки до осей у и назовем и . Тогда и Из рис.1 имеем:    Первый из этих трех интегралов — момент инерции относительно центральной оси Оу. Второй — статический момент относительно той же оси; он равен нулю, так как ось у проходит через центр тяжести фигуры. Наконец, третий интеграл равен площади фигуры F. Таким образом, (1) т. е. момент инерции относительно любой оси равен моменту инерции относительно центральной оси, проведенной параллельно у данной, плюс произведение площади фигуры на квадрат расстояния между осями.    Значит, наша задача теперь свелась к вычислению только центральных моментов инерции; если мы их будем знать, то сможем вычислить момент инерции относительно любой другой оси. Из формулы (1) следует, что центральный момент инерции является наименьшим среди моментов инерции относительно параллельных осей и для него мы получаем: Найдем также центробежный момент инерции относительно осей , параллельных центральным, если известен (Рис.1). Так как по определению где: , то отсюда следует    Так как два последних интеграла представляют собой статические моменты площади относительно центральных осей Оу и Oz то они обращаются в нуль и, следовательно: (2)    Центробежный момент инерции относительно системы взаимно перпендикулярных осей, параллельных центральным, равен центробежному моменту инерции относительно этих центральных осей плюс произведение из площади фигуры, на координаты ее центра тяжести относительно новых осей.    Зависимость между моментами инерции при повороте осей.    Центральных осей можно провести сколько угодно. Является вопрос, нельзя ли выразить момент инерции относительно любой центральной оси в зависимости от момента инерции относительно одной или двух определенных осей. Для этого посмотрим, как будут меняться моменты инерции относительно двух взаимно перпендикулярных осей при повороте их на угол .    Возьмем какую-либо фигуру и проведем через ее центр тяжести О две взаимно перпендикулярные оси Оу и Oz (Рис.2). Рис.2. Расчетная модель для определения моментов инерции для повернутых осей.      Пусть нам известны осевые моменты инерции относительно этих осей , , а также центробежный момент инерции .Начертим вторую систему координатных осей и наклоненных к первым под углом ; положительное направление этого угла будем считать при повороте осей вокруг точки О против часовой стрелки. Начало координат О сохраняем. Выразим моменты относительно второй системы координатных осей и, через известные моменты инерции и . Напишем выражения для моментов инерции относительно этих осей: (3) Из чертежа видно, что координаты площадки dF в системе повернутых осей будут: Подставляя эти значения и в формулы (14.9), получим: или (4) Аналогично: или (5) Первые два интеграла выражений (4) и (5) представляют собой осевые моменты инерции и , а последний — центробежный момент инерции площади относительно этих осей . Тогда: (6) Для решения задач могут понадобиться формулы перехода от одних осей к другим для центробежного момента инерции. При повороте осей (Рис.2) имеем: где и вычисляются по формулам (14.10); тогда После преобразований получим: (7)    Таким образом, для того чтобы вычислить момент инерции относительно любой центральной оси , надо знать моменты инерции и относительно системы каких-нибудь двух взаимно перпендикулярных центральных осей Оу и Oz, центробежный момент инерции относительно тех же осей и угол наклона оси к оси у.    Для вычисления же величин > , приходится так выбирать оси у и z и разбивать площадь фигуры на такие составные части, чтобы иметь возможность произвести это вычисление, пользуясь только формулами перехода от центральных осей каждой из составных частей к осям, им параллельным. Как это сделать на практике, будет показано ниже на примере. Заметим, что при этом вычислении сложные фигуры надо разбивать на такие элементарные части, для которых по возможности известны величины центральных моментов инерции относительно системы взаимно перпендикулярных осей.    Заметим, что ход вывода и полученные результаты не изменились бы, если бы начало координат было взято не в центре тяжести сечения, а в любой другой точке О. Таким образом, формулы (6) и (7) являются формулами перехода от одной системы взаимно-перпендикулярных осей к другой, повернутой на некоторый угол , независимо от того, центральные это оси или нет.    Из формул (6) можно получить еще одну зависимость между моментами инерции при повороте осей. Сложив выражения для и получим т. е. сумма моментов инерции относительно любых взаимно перпендикулярных осей у и z не меняется при их повороте. Подставляя последнее выражение вместо и их значения, получим: где — расстояние площадок dF от точки О. Величина является, как уже известно, полярным моментом инерции сечения относительно точки О.    Таким образом, полярный момент инерции сечения относительно какой-либо точки равен сумме осевых моментов инерции относительно взаимно перпендикулярных осей, проходящих через эту точку. Поэтому эта сумма и остается постоянной при повороте осей. Этой зависимостью (14.16) можно пользоваться для упрощения вычисления моментов инерции. Так, для круга: Так как по симметрии для круга то что было получено выше путем интегрирования. Точно также для тонкостенного кольцевого сечения можно получить: Лекция № 18. Главные оси инерции и главные моменты инерции.    Как уже известно, зная для данной фигуры центральные моменты инерции , и , можно вычислить момент инерции и относительно любой другой оси.    При этом можно за основную систему осей принять такую систему, при которой формулы существенно упрощаются. Именно, можно найти систему координатных осей, для которых центробежный момент инерции равен.нулю. В самом деле, моменты инерции и всегда положительны, как суммы положительных слагаемых, центробежный же момент может быть и положительным и отрицательным, так как слагаемые zydF могут быть разного знака в зависимости от знаков z и у для той или иной площадки. Значит, он может быть равен нулю.    Оси, относительно которых центробежный момент инерции обращается в нуль, называются главными осями инерции. Если начало такой системы помещено в центре тяжести фигуры, то это будут главные центральные оси. Эти оси мы будем обозначать и ; для них Найдем, под каким углом наклонены к центральным осям у и z (фиг. 198) главные оси. Рис.1. Расчетная модель для определения положения главных осей инерции.      В известном выражении для перехода от осей yz к осям , для центробежного момента инерции дадим углу значение ; тогда оси и , совпадут c главными, и центробежный момент инерции будет равен нулю: или откуда: (1)    Этому уравнению удовлетворяют два значения , отличающиеся на 180°, или два значения , отличающиеся на 90°. Таким образом, это уравнение дает нам положение двух осей, составляющих между собой прямой угол. Это и будут главные центральные оси и , для которых .    Пользуясь этой формулой, можно по известным , и получить формулы для главных моментов инерции и . Для этого опять воспользуемся выражениями для осевых моментов инерции общего положения. Они определяют значения и если вместо подставить (2)    Полученными соотношениями можно пользоваться при решении задач. Одним из главных моментов инерции является , другим .    Формулы (2) можно преобразовать к виду, свободному от значения . Выражая и через и подставляя их значения в первую формулу (2), получим, делая одновременно замену из формулы (1): Заменяя здесь из формулы (1) дробь на получаем (3)    К этому же выражению можно прийти, делая подобное же преобразование второй формулы (3).    За основную систему центральных осей, от которых можно переходить к любой другой, можно взять не Оу и Oz, а главные оси и ; тогда в формулах не будет фигурировать центробежный момент инерции (). Обозначим угол, составленный осью , (Рис.2) с главной осью , через . Для вычисления , и , переходя от осей и нужно в ранее найденных выражениях для , и , заменить угол через , а , и — через , и . В результате получаем:    По своему виду эти формулы совершенно аналогичны формулам для нормальных и касательных напряжений по двум взаимно-перпендикулярным площадкам в элементе, подвергающемся растяжению в двух направлениях. Укажем лишь формулу, позволяющую из двух значений угла выделить то, которое соответствует отклонению первой главной оси (дающей max J) от начального положения оси у:    Теперь можно окончательно формулировать, что надо сделать, чтобы получить возможность простейшим образом вычислять момент инерции фигуры относительно любой оси. Необходимо через центр тяжести фигуры провести оси Оу и Oz так, чтобы, разбивая фигуру на простейшие части, мы могли легко вычислить моменты , и после этого следует найти по формуле (14.17) величину угла и вычислить главные центральные моменты инерции и по формулам (14.18). Рис.2. Расчетная модель нахождения положения главных осей.      Далее, можно найти момент инерции относительно любой центральной оси (Рис.2), наклоненной к под углом :    Зная же центральный момент инерции , можно сейчас же найти момент инерции относительно любой параллельной ей оси , проходящей на расстоянии (рис.2) от центра тяжести:    Во многих случаях удается сразу провести главные оси фигуры; если фигура имеет ось симметрии, то это и будет одна из главных осей. В самом деле, при выводе формулы мы уже имели дело с интегралом, представляющим собой центробежный момент инерции сечения относительно осей у и z; было доказано, что если ось Oz является осью симметрии, этот интеграл обращается в нуль.    Стало быть, в данном случае оси Оу и Oz являются главными центральными осями инерции сечения. Таким образом, ось симметрии — всегда главная центральная ось; вторая главная центральная ось проходит через центр тяжести перпендикулярно к оси симметрии.    Пример. Найти моменты инерции прямоугольника (Рис.3) относительно осей и и центробежный момент его относительно тех же осей. Рис.3. Пример расчета моментов инерции.      Центральные оси у и z как оси симметрии будут главными осями; моменты инерции сечения относительно этих осей равны: Центральные моменты относительно повернутых осей и равны: Центробежный момент инерции относительно осей и равен: Координаты центра тяжести прямоугольника относительно осей и равны: Моменты инерции относительно осей и равны: Центробежный момент инерции равен:   Наибольшее и наименьшее значения центральных моментов инерции.    Как известно, центральные моменты инерции являются наименьшими из всех моментов относительно ряда параллельных осей.    Найдем теперь крайние значения (максимум и минимум) для центральных моментов инерции. Возьмем ось , и начнем ее вращать, т. е. менять угол ; при этом будет изменяться величина Наибольшее и наименьшее значения этого момента инерции соответствуют углу , при котором производная обращается в нуль. Эта производная равна: Подставляя в написанное выражение и приравнивая его нулю, получаем: отсюда    Таким образом, осями с наибольшим и наименьшим центральными моментами инерции будут главные центральные оси. Так как при повороте центральных осей сумма соответствующих моментов инерции не меняется, то Когда один из центральных моментов инерции достигает наибольшего значения, другой оказывается минимальным, т, е. если то    Следовательно, главные центральные оси инерции — это такие взаимно перпендикулярные оси, проходящие через центр тяжести сечения, относительно которых центробежный момент инерции обращается в нуль, а осевые моменты инерции имеют наибольшее и наименьшее значения. Лекция № 19. Прямой чистый изгиб стержня    При прямом чистом изгибе в поперечном сечении стержня возникает только один силовой фактор — изгибающий момент Мх (рис. 1). Так как Qy=dMx/dz=0, то Mx=const и чистый прямой изгиб может быть реализован при загружении стержня парами сил, приложенными в торцевых сечениях стержня. Поскольку изгибающий момент Mх по определению равен сумме моментов внутренних сил относительно оси Ох с нормальными напряжениями его связывает выкающее из этого определения уравнение статики .    Сформулируем предпосылки теории чистого прямого изгиба призматического стержня. Для этого проанализируем деформации модели стержня из низкомодульного материала, на боковой поверхности которого нанесена сетка продольных и поперечных рисок (рис. 2). Поскольку поперечные риски при изгибе стержня парами сил, приложенными в торцевых сечениях, остаются прямыми и перпендикулярными к искривленным продольным рискам, это позволяет сделать вывод о выполнении гипотезы плоских сечений, которая, как показывает решение этой задачи методами теории упругости, перестает быть гипотезой, становясь точным фактом — законом плоских сечений. Замеряя изменение расстояний между продольными рисками, приходим к выводу о справедливости гипотезы о ненадавливании продольных волокон .    Ортогональность продольных и поперечных рисок до и после деформирования (как отражение действия закона плоских сечений) указывает также на отсутствие сдвигов, касательных напряжений в поперечных и продольных сечениях стержня. Рис.1. Связь внутреннего усилия и напряжения   Рис.2. Модель чистого изгиба      Таким образом, чистый прямой изгиб призматического стержня сводится к одноосному растяжению или сжатию продольных волокон напряжениями (индекс г в дальнейшем опускаем). При этом часть волокон находится в зоне растяжения (на рис. 2 это—нижние волокна), а другая часть—в зоне сжатия (верхние волокна). Эти зоны разделены нейтральным слоем (п—п), не меняющим своей длины, напряжения в котором равны нулю. Учитывая сформулированные выше предпосылки и полагая, что материал стержня линейно-упругий, т. е. закон Гука в этом случае имеет вид: , выведем формулы для кривизны нейтрального слоя (—радиус кривизны) и нормальных напряжений . Предварительно отметим, что постоянство поперечного сечения призматического стержня и изгибающего момента (Mх=сonst), обеспечивает постоянство радиуса кривизны нейтрального слоя по длине стержня (рис. 3, а), нейтральный слой (п—п) описывается дугой окружности.    Рассмотрим призматический стержень в условиях прямого чистого изгиба (рис. 3, а) с поперечным сечением, симметричным относительно вертикальной оси Оу. Это условие не отразится на конечном результате (чтобы прямой изгиб был возможен, необходимо совпадение оси Оу с главной осью инерции поперечного сечения, которая и является осью симметрии). Ось Ox поместим на нейтральном слое, положение которого заранее неизвестно. а) расчетная схема, б) деформации и напряжения Рис.3. Фрагмент чистого изгиба бруса      Рассмотрим вырезанный из стержня элемент длиной dz, который в масштабе с искаженными в интересах наглядности пропорциями изображен на рис. 3, б. Поскольку интерес представляют деформации элемента, определяемые относительным смещением его точек, одно из торцевых сечений элемента можно считать неподвижным. Ввиду малости считаем, что точки поперечного сечения при повороте на этот угол перемещаются не по дугам, а по соответствующим касательным. Вычислим относительную деформацию продольного волокна АВ, отстоящего от нейтрального слоя на у: . Из подобия треугольников С001 и 01ВВ1 следует, что .    Продольная деформация оказалась линейной функцией расстояния от нейтрального слоя, что является прямым следствием закона плоских сечений (1) Тогда нормальное напряжение, растягивающее волокно АВ, на основании закона Гука будет равно (2)    Эта формула не пригодна для практического использования, так как содержит две неизвестные: кривизну нейтрального слоя и положение нейтральной оси Ох, от которой отсчитывается координата у. Для определения этих неизвестных воспользуемся уравнениями равновесия статики. Первое выражает требование равенства нулю продольной силы (3) Подставляя в это уравнение выражение (2) и учитывая, что , получаем, что    Интеграл в левой части этого уравнения представляет собой статический момент поперечного сечения стержня относительно нейтральной оси Ох, который может быть равным нулю только относительно центральной оси. Поэтому нейтральная ось Ох проходит через центр тяжести поперечного сечения.    Вторым уравнением равновесия статики является, связывающее нормальные напряжения с изгибающим моментом (который легко может быть выражен через внешние силы и поэтому считается заданной величиной). Подставляя в уравнение связки выражение для. напряжений, получим: и учитывая, что где Jx—главный центральный момент инерции относительно оси Ох, для кривизны нейтрального слоя получаем формулу (4)    Кривизна нейтрального слоя является мерой деформации стержня при прямом чистом изгибе. тем меньше, чем больше величина EJх, называемая жесткостью поперечного сечения при изгибе (по аналогии с жесткостью поперечного сечения при растяжении EF). Подставляя (4) в (2), получаем формулу для нормальных напряжений в виде (5) Рис.4. Распределение нормальных напряжений   которая была впервые получена Ш. Кулоном в 1773 году. Для согласования знаков изгибающего момента Мх и нормальных напряжений в правой части формулы (5) ставится знак минус, так как при Mх>0 нормальные напряжения при y>0 оказываются сжимающими. Однако в практических расчетах удобнее, не придерживаясь формального правила знаков, определять напряжения по модулю, а знак ставить по смыслу. Нормальные напряжения при чистом изгибе призматического стержня являются линейной функцией координаты у и достигают наибольших значений в волокнах, наиболее удаленных от нейтральной оси (рис. 4), т. е.    Здесь введена геометрическая характеристика , имеющая размерность м3 и получившая название момента сопротивления при изгибе. Поскольку при заданном Mх напряжения max ? тем меньше, чем больше Wx, момент сопротивления является геометрической характеристикой прочности поперечного сечения изгибе. Приведем примеры вычисления моментов сопротивления для простейших форм поперечных сечений. Для прямоугольного поперечного сечения (рис. 5, а) имеем Jх=bh3/12,ymax = h/2 и Wx = Jx/ymax = bh2/6. Аналогично для круга (рис. 5,a Jx=d4/64, ymax=d/2) получаем Wx=d3/32, для кругового кольцевого сечения (рис. 5, в), у которого получаем Итак, максимальные нормальные напряжения в сечении с изгибающим моментом Mх определяются по формуле (6) Рис.5. Конфигурации поперечных сечений бруса      Этой формулой удобно пользоваться для расчета балок пластичного материала в упругой области, одинаково работающего на растяжение и сжатие. Поскольку знак напряжения в этом случае не имеет значения, напряжения вычисляются по модулю, и условие прочности при изгибе балки в форме призматического стержня получает вид где max Mх—максимальное значение изгибающего момента (легко определяемое по его эпюре), — допускаемое напряжение на простое растяжение (сжатие). Напомним, что чистый изгиб балки сводится к растяжению и сжатию ее волокон (неравномерному в отличие от деформации растяжения (сжатия) призматического стержня, при котором ). Рис.6. Модель изгиба хрупкого материала      При расчете балок из хрупких материалов следует различать наибольшие растягивающие max и наибольшие сжимающие напряжения (рис. 6.), которые также определяются по модулю непосредственно и сравниваются с допускаемыми напряжениями на растяжение и сжатие . Условие прочности в этом случае будет иметь вид: . Лекция № 20. Прямой поперечный изгиб стержня    При прямом поперечном изгибе в сечениях стержня возникает изгибающий момент Мх и поперечная сила Qy рис. 1), которые связаны с нормальными и касательными напряжениями Рис.1. Связь усилий и напряжений   а) сосредоточенная сила, б) распределенная Рис.2. Модели прямого поперечного изгиба:      Выведенная в случае чистого изгиба стержня формула для прямого поперечного изгиба, вообще говоря, неприменима, поскольку из-за сдвигов, вызываемых касательными напряжениями , происходит депланация поперечных сечении (отклонение от закона плоских сечений). Однако для балок с высотой сечения h
«Сопротивление материалов — наука о прочности» 👇
Готовые курсовые работы и рефераты
Купить от 250 ₽
Решение задач от ИИ за 2 минуты
Решить задачу
Помощь с рефератом от нейросети
Написать ИИ

Тебе могут подойти лекции

Автор(ы) Р.П. Моисеенко
Автор(ы) Иванов К. С.
Смотреть все 86 лекций
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot