Справочник от Автор24
Поделись лекцией за скидку на Автор24

Парная регрессия и корреляция

  • 👀 412 просмотров
  • 📌 346 загрузок
Выбери формат для чтения
Загружаем конспект в формате docx
Это займет всего пару минут! А пока ты можешь прочитать работу в формате Word 👇
Конспект лекции по дисциплине «Парная регрессия и корреляция» docx
ПАРНАЯ РЕГРЕССИЯ И КОРРЕЛЯЦИЯ Парная регрессия представляет собой регрессию между двумя переменными – и , т. е. модель вида: , где – зависимая переменная (результативный признак); – независимая, или объясняющая, переменная (признак-фактор). Между переменными и нет строгой функциональной зависимости, поэтому практически в каждом отдельном случае величина складывается из двух слагаемых: , где – фактическое значение результативного признака; – теоретическое значение результативного признака, найденное исходя из уравнения регрессии; – случайная величина, характеризующая отклонения реального значения результативного признака от теоретического, найденного по уравнению регрессии. Случайная величина называется также возмущением. Она включает влияние не учтенных в модели факторов, случайных ошибок и особенностей измерения. Ее присутствие в модели порождено тремя источниками: спецификацией модели, выборочным характером исходных данных, особенностями измерения переменных. От правильно выбранной спецификации модели зависит величина случайных ошибок: они тем меньше, чем в большей мере теоретические значения результативного признака , подходят к фактическим данным . К ошибкам спецификации относятся неправильный выбор той или иной математической функции для и недоучет в уравнении регрессии какого-либо существенного фактора, т. е. использование парной регрессии вместо множественной. В парной регрессии выбор вида математической функции может быть осуществлен тремя методами: 1) графическим; 2) аналитическим, т.е. исходя из теории изучаемой взаимосвязи; 3) экспериментальным. При изучении зависимости между двумя признаками графический метод подбора вида уравнения регрессии достаточно нагляден. Он основан на поле корреляции. Основные типы кривых, используемые при количественной оценке связей, представлены на рис. 1: Рис. 1. Основные типы кривых, используемые при количественной оценке связей между двумя переменными. Значительный интерес представляет аналитический метод выбора типа уравнения регрессии. Он основан на изучении материальной природы связи исследуемых признаков. При обработке информации на компьютере выбор вида уравнения регрессии обычно осуществляется экспериментальным методом. Линейная модель парной регрессии и корреляции Рассмотрим простейшую модель парной регрессии – линейную регрессию. Линейная регрессия находит широкое применение в эконометрике ввиду четкой экономической интерпретации ее параметров. Линейная регрессия сводится к нахождению уравнения вида или . (1.1) Уравнение вида позволяет по заданным значениям фактора находить теоретические значения результативного признака, подставляя в него фактические значения фактора . Построение линейной регрессии сводится к оценке ее параметров – и . Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров и , при которых сумма квадратов отклонений фактических значений результативного признака от теоретических минимальна: (1.2) Как известно из курса математического анализа, чтобы найти минимум функции (1.2), надо вычислить частные производные по каждому из параметров и и приравнять их к нулю. Обозначим через , тогда: . (1.3) После несложных преобразований, получим нормальную систему линейных уравнений для оценки параметров и : (1.4) Решая систему уравнений (1.4), найдем искомые оценки параметров и . Можно воспользоваться следующими готовыми формулами, которые следуют непосредственно из решения системы (1.4): , (1.5) где , , , . Параметр называется коэффициентом регрессии. Его величина показывает среднее изменение результата с изменением фактора на одну единицу. Возможность четкой экономической интерпретации коэффициента регрессии сделала линейное уравнение регрессии достаточно распространенным в эконометрических исследованиях. Формально – значение при . Если признак-фактор не может иметь нулевого значения, то вышеуказанная трактовка свободного члена не имеет смысла, т.е. параметр может не иметь экономического содержания. Уравнение регрессии всегда дополняется показателем тесноты связи. При использовании линейной регрессии в качестве такого показателя выступает линейный коэффициент корреляции , который можно рассчитать по следующим формулам: (1.6) где , Линейный коэффициент корреляции находится в пределах: . Чем ближе абсолютное значение к единице, тем сильнее линейная связь между факторами (при имеем строгую функциональную зависимость). Но следует иметь в виду, что близость абсолютной величины линейного коэффициента корреляции к нулю еще не означает отсутствия связи между признаками. При другой (нелинейной) спецификации модели связь между признаками может оказаться достаточно тесной. Для оценки качества подбора линейной функции рассчитывается квадрат линейного коэффициента корреляции , называемый коэффициентом детерминации. Коэффициент детерминации характеризует долю дисперсии результативного признака , объясняемую регрессией, в общей дисперсии результативного признака: , (1.7) где , . Соответственно величина характеризует долю дисперсии , вызванную влиянием остальных, не учтенных в модели, факторов. После того как найдено уравнение линейной регрессии, проводится оценка значимости как уравнения в целом, так и отдельных его параметров. Проверить значимость уравнения регрессии – значит установить, соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным и достаточно ли включенных в уравнение объясняющих переменных (одной или нескольких) для описания зависимой переменной. Чтобы иметь общее суждение о качестве модели из относительных отклонений по каждому наблюдению, определяют среднюю ошибку аппроксимации: . (1.8) Средняя ошибка аппроксимации не должна превышать 8–10%. Оценка значимости уравнения регрессии в целом производится на основе - критерия Фишера, которому предшествует дисперсионный анализ. В математической статистике дисперсионный анализ рассматривается как самостоятельный инструмент статистического анализа. В эконометрике он применяется как вспомогательное средство для изучения качества регрессионной модели. Согласно основной идее дисперсионного анализа, общая сумма квадратов отклонений переменной от среднего значения раскладывается на две части – «объясненную» и «необъясненную»:ll , где – общая сумма квадратов отклонений; – сумма квадратов отклонений, объясненная регрессией (или факторная сумма квадратов отклонений); – остаточная сумма квадратов отклонений, характеризующая влияние неучтенных в модели факторов. Схема дисперсионного анализа имеет вид, представленный в таблице 1.1 ( – число наблюдений, – число параметров при переменной ). Таблица 1.1 Компоненты дисперсии Сумма квадратов Число степеней свободы Дисперсия на одну степень свободы Общая Факторная Остаточная Определение дисперсии на одну степень свободы приводит дисперсии к сравнимому виду. Сопоставляя факторную и остаточную дисперсии в расчете на одну степень свободы, получим величину - критерия Фишера: . (1.9) Фактическое значение -критерия Фишера (1.9) сравнивается с табличным значением при уровне значимости и степенях свободы и . При этом, если фактическое значение -критерия больше табличного, то признается статистическая значимость уравнения в целом. Для парной линейной регрессии , поэтому . (1.10) Величина - критерия связана с коэффициентом детерминации , и ее можно рассчитать по следующей формуле: . (1.11) В парной линейной регрессии оценивается значимость не только уравнения в целом, но и отдельных его параметров. Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t-критерий Стьюдента и доверительные интервалы каждого из показателей. Оценка значимости коэффициентов регрессии и корреляции с помощью t-критерия Стьюдента проводится путем сопоставления их значений с величиной случайной ошибки: Случайные ошибки параметров линейной регрессии и коэффициента корреляции определяются по формулам: (1.12) (1.13) (1.14) Величина стандартной ошибки совместно с -распределением Стьюдента при степенях свободы применяется для проверки существенности коэффициента регрессии и для расчета его доверительного интервала. Для оценки существенности коэффициента регрессии определяется фактическое значение -критерия Стьюдента, которое затем сравнивается с табличным значением при определенном уровне значимости и числе степеней свободы . Если tтабл tфак, то a, b и rxy не случайно отличаются от нуля и сформировались под влиянием систематически действующего фактора x. Если tтабл tфак, то признается случайная природа формирования a, b или rxy. Существует связь между -критерием Стьюдента и -критерием Фишера: . (1.15) Для расчета доверительного интервала определяем предельную ошибку  для каждого показателя: Формулы для расчета доверительных интервалов имеют следующий вид: Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, так как он не может одновременно принимать и положительное, и отрицательное значения. В прогнозных расчетах по уравнению регрессии определяется предсказываемое значение как точечный прогноз при , т.е. путем подстановки в уравнение регрессии соответствующего значения . Однако точечный прогноз явно не реален. Поэтому он дополняется расчетом стандартной ошибки , т.е. , и соответственно интервальной оценкой прогнозного значения : , где , а – средняя ошибка прогнозируемого индивидуального значения: . (1.16)
«Парная регрессия и корреляция» 👇
Готовые курсовые работы и рефераты
Купить от 250 ₽
Решение задач от ИИ за 2 минуты
Решить задачу
Найди решение своей задачи среди 1 000 000 ответов
Найти

Тебе могут подойти лекции

Смотреть все 938 лекций
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot