Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Построение таблиц истинности

Определение 1

Логическая функция – функция, переменные которой принимают одно из двух значений: $1$ или $0$.

Любую логическую функцию можно задать с помощью таблицы истинности: набор всех возможных аргументов записывается в левой части таблицы, а соответствующие значения логической функции – в правой части.

Определение 2

Таблица истинности – таблица, которая показывает, какие значения примет составное выражение при всех возможных наборах значений простых выражений, входящих в него.

Определение 3

Равносильными называются логические выражения, последние столбцы таблиц истинности которых совпадают. Равносильность обозначается с помощью знака $«=»$.

При составлении таблицы истинности важно учитывать следующий порядок выполнения логических операций:



Рисунок 1.

Приоритетом в выполнении порядка выполнения операций пользуются скобки.

Алгоритм построения таблицы истинности логической функции

  1. Определяют количество строк: кол-во строк = $2^n + 1$ (для строки заголовка), $n$ – количество простых выражений. Например, для функций двух переменных существует $2^2 = 4$ комбинации наборов значений переменных, для функций трех переменных – $2^3 = 8$ и т.д.

  2. Определяют количество столбцов: кол-во столбцов = кол-во переменных + кол-во логических операций. При определении количества логических операций учитывают также порядок их выполнения.

  3. Заполняют столбцы результатами выполнения логических операций в определенной последовательности, учитывая таблицы истинности основных логических операций.

«Построение таблиц истинности» 👇
Помощь эксперта по теме работы
Найти эксперта
Решение задач от ИИ за 2 минуты
Решить задачу
Найди решение своей задачи среди 1 000 000 ответов
Найти



Рисунок 2.

Пример 1

Составить таблицу истинности логического выражения $D=\bar{A} \vee (B \vee C)$.

Решение:

  1. Определим количество строк:

    Количество простых выражений – $n=3$, значит

    кол-во строк = $2^3 + 1=9$.

  2. Определим количество столбцов:

    Количество переменных – $3$.

    Количество логических операций и их последовательность:

    1. инверсия ($\bar{A}$);
    2. дизъюнкция, т.к. она находится в скобках ($B \vee C$);
    3. дизъюнкция ($\overline{A}\vee \left(B\vee C\right)$) – искомое логическое выражение.

      Кол-во столбцов = $3 + 3=6$.

  3. Заполним таблицу, учитывая таблицы истинности логических операций.



Рисунок 3.

Пример 2

По данному логическому выражению построить таблицу истинности:

\[F=\overline{(A\vee B)\bigwedge \overline{C}}\vee \overline{(A\vee C)\bigwedge B}\]

Решение:

  1. Определим количество строк:

    Количество простых выражений – $n=3$, значит

    кол-во строк = $2^3 + 1=9$.

  2. Определим количество столбцов:

    Количество переменных – $3$.

    Количество логических операций и их последовательность:

    1. отрицание ($\bar{C}$);
    2. дизъюнкция, т.к. она находится в скобках ($A \vee B$);
    3. конъюнкция ($(A\vee B)\bigwedge \overline{C}$);
    4. отрицание, которое обозначим $F_1$ ($\overline{(A\vee B)\bigwedge \overline{C}}$);
    5. дизъюнкция ($A \vee C$);
    6. конъюнкция ($(A\vee C)\bigwedge B$);
    7. отрицание, которое обозначим $F_2$ ($\overline{(A\vee C)\bigwedge B}$);
    8. дизъюнкция – искомая логическая функция ($\overline{(A\vee B)\bigwedge \overline{C}}\vee \overline{(A\vee C)\bigwedge B}$).

      Кол-во столбцов = $3 + 8 = 11$.

  3. Заполним таблицу, учитывая таблицу истинности логических операций.



Рисунок 4.

Алгоритм построения логической функции по ее таблице истинности

  1. Выделяют в таблице истинности строки со значением функции, равным $1$.
  2. Выписывают искомую формулу как дизъюнкцию нескольких логических выражений. Количество этих выражений равно количеству выделенных строк.
  3. Каждое логическое выражение в этой дизъюнкции записать как конъюнкцию аргументов функции.
  4. В случае, когда значение какого-то из аргументов функции в соответствующей строке таблицы принимает значение $0$, то этот аргумент записать в виде его отрицания.
Пример 3

По данной таблице истинности некоторой логической функции $Y(A,B)$ cоставить соответствующую логическую функцию.



Рисунок 5.

Решение:

  1. Значение функции равно $1$ в $1$-й и $3$-й строках таблицы.
  2. Поскольку имеем $2$ строки, получим дизъюнкцию двух элементов:



    Рисунок 6.

  3. Каждое логическое выражение в этой дизъюнкции запишем как конъюнкцию аргументов функции $A$ и $B$: $\left(A\wedge B\right)\vee \left(A\wedge B\right)$
  4. В случае, когда значение в соответствующей строке таблицы равно $0$, запишем этот аргумент с отрицанием, получим искомую функцию:\[Y\left(A,B\right)=\left(\overline{A}\wedge \overline{B}\right)\vee \left(A\wedge \overline{B}\right).\]
Дата написания статьи: 12.04.2016
Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot