Альдегиды в щелочной среде вступают в реакции альдольной конденсации (А. Бородин, Ж. Вурц, 1872):
Сначала под действием основного катализатора - гидроксид-аниона или этоксид-аниона $C_2H_5O^-$ из альдегида образуется сопряженный анион - сильный нуклеофил, который атакует электрофильный центр карбонильной группы следующей молекулы альдегида. Полученный в результате такого взаимодействия алкоголятний анион быстро превращается в альдоль.
Рисунок 1.
Так, например, две молекулы пропаналя в реакции с водными растворами гидроксидов при 0-5 $^\circ$С образуют 3-гидрокси-2-метилпентаналь с 55-60% выходом, а две молекулы уксусного альдегида дают альдоль с 50%-ным выходом:
Рисунок 2.
Механизм альдольной конденсации катализируемой основаниями
Механизм реакций альдольной конденсации, катализируемых основаниями, включает три стадии:
Рисунок 3.
На первой стадии образуются енолят-ионы. Равновесные концентрации енолят-ионов очень малы и редко превышают 1-3%, поскольку $pK_a$ альдегидов примерно равны 17-18, а для воды значение $pK_a$ равно 15,7. Присоединение енолят-ионов к карбонильным группам неионизированных молекул альдегидов на второй стадии определяет скорость всего процесса.
Дегидратация альдолей
Синтезированные альдоли при нагревании, как правило, легко отщепляют воду с образованием ненасыщенных карбонильных соединений. Процесс получения ненасыщенного альдегида или кетона из альдолей называют кротоновой конденсацией, по названию альдегида, впервые полученного таким методом:
Рисунок 4.
Дегидратация альдолей в $\alpha, \beta$-ненасыщенные альдегиды также катализируется основаниями и протекает с промежуточным образованием енолят-ионов альдолей:
Рисунок 5.
Механизм альдольной конденсации катализируемой кислотами
Альдегиды способны вступать в альдольную конденсацию и в кислой сред, но остановить реакцию на стадии альдолей при этом достаточно трудно, и часто получается продукт кротоновой конденсации.
В кислых средах определяющей скорость всего процесса стадией является присоединение енолов к карбонильным группам.
В отличие от щелочного катализатора, который действует только на метиленовую компонента, при кислотном катализе наблюдается действие как на метиленовый, так и на карбонильный компонент с протонизацией атомов кислорода:
Рисунок 6.
В кислых средах практически невозможно остановить процесс на стадии образования альдолей и конечными продуктами оказываются $\alpha, \beta$-ненасыщенные альдегиды - продукты их дегидратации.
Для протонованой метиленовой компоненты характерно отщепление $H+$ от группы $OH$ с образованием исходной карбонильной молекулы или от $\alpha$-углеродного атома с образованием енола. В еноле же под влиянием $+M$-эффекта атома кислорода и $-I$-эффекта вицильной группы электронная плотность $\pi$-связи смещена отгидроксильной группы, в результате чего енол реагирует далее с активированной карбонильной компонентой.
В сильнокислой среде для альдолей обычно характерна дегидратация с образованием оксида мезитила. В условиях реакции оксид мезитила реагирует с последующей молекулой карбонильного соединенния и конечным продуктом, в отличие от реакции в щелочной среде, является форон (в присутствия газообразной кислоты) или мезитилен (в присутствии концентрированной жидкой кислоты).