Двойная связь между атомами углерода и кислорода в карбонильной $C = O$ группе сильно поляризована:
Рисунок 1.
Что обьясняется большим различием в электроотрицательности атомов кислорода и углерода. Следствием высокой полярности карбонильной группы является то, что альдегиды и кетоны обладают большими дипольными моментами. В табл. 1 приведены значения дипольных моментов для четырех самых распространенных карбонильных соединений.
Рисунок 2.
То, что карбонильная группа обладает высокой полярностью определяет ход реакций присоединения разнообразных полярных реагентов по кратной $C = O$ связи. В реакциях присоединения по карбонильной группе ключевой стадией является присоединение нуклеофилов к электронодефицитным атомам углерода. Нуклеофильные агенты атакуют карбонильные атомы углерода по направлению перпендикулярному плоскости двойной связи, при этом атомы углерода изменяют свою гибридизацию с $sp^2$ до $sp^3$ в промежуточных тетраэдрическиз интермедиатах:
Рисунок 3.
Механизм реакций нуклеофильного присоединения
Механизм реакций нуклеофильного присоединения обусловлен полярностью связи $C = O$, которая обеспечивает возникновение электрофильного ($C^{\delta+}$) и основного центров ($:O:$).
Рисунок 4.
Большинство реакций $A_N$ протекает по одной из схем:
Рисунок 5.
В первом случае нуклеофил атакует электрофильный центр ($C^{\delta+}$), в результате чего $\pi$- связь $C = O$ разрывается, а пара электронов, которые образовывали $\pi$- связь, переходит на атом кислорода, на котором возникает полный отрицательный заряд. Карбонильный атом углерода приобретает $sp3$-гидридизованое состояние и образует $\sigma$- связь с нуклеофилом ($C-Nu$). Промежуточное соединение - оксониевий анион - является сильным основанием, поэтому он легко взаимодействует с любой кислотой, даже с $H_2O$, отщепляя от них и присоединяя к себе протон.
Карбонильный атом углерода приобретает $sp3$-гидридизованого состояния и образует Промежуточное соединение - оксониевий анион - есть сильным основанием, поэтому он легко взаимодействует с любой кислотой, даже с $H_2O$, отщепляя от них и присоединяя к себе протон.
По другой схеме механизма $AN$ на первой стадии происходит кислотный катализ - взаимодействие карбонильного атома кислорода с протоном $H^+$ и образования карбкатиона, с полным положительным зарядом на атоме углерода, который переходит в $sp3$-гибридизованое состоянии и на второй стадии подвергается атаке нуклефилом.
Влияние заместителей на ход реакции нуклеофильного присоединения к карбонильной группе
В обоих случаях лимитирующей стадией, определяющей скорость взаимодействия по механизму $AN$ в целом, является присоединение нуклеофила. Поэтому понятно, что характер протекания реакции обусловлен величиной положительным зарядом на карбонильном атоме углерода, который зависит от строения углеводородного радикала и природы заместителей. Электроноакцепторные заместители ($Hal$, $OH$, $NH_2$, $SH$ и т.д.) оттягивают от карбонильного углерода электронную плотность, увеличивая положительный заряд на нем, и облегчают и ускоряют протекание реакций $AN$. Электронодонорные заместители ($C_nH_{2n+1}$), наоборот, за счет положительного индуктивного эффекта ($+I$) смещают электронную плотность в сторону атома углерода $+I$ эффект карбонильной группы на нем уменьшается, а это замедляет ход реакций $AN$. По этой причине кетоны менее реакционноспособные, чем альдегиды, поскольку суммарный электронодонорный эффект двух радикалов в кетонах сильнее по сравнению с одним радикалом в молекуле альдегида.
Влияние строения соединений на ход реакции нуклеофильного присоединения к карбонильной группе
Ароматические оксосоединения тоже проявляют меньшую активность в реакциях нуклеофильного присоединения. Это объясняется $\pi$, $\pi$-сопряжением бензольного кольца с карбонильной группой, в результате чего наблюдается заметное уменьшение частичного положительного заряда на карбонильном атома углерода.
На реакционную способность оксосоединений влияют и стерические факторы: объемные радикалы затрудняют атаку нуклеофилом карбонильного атома углерода и, следовательно, снижают скорость реакции.
Алициклические кетоны проявляют высокую реакционную способность по сравнению с их алифатическими аналогами, что объясняется отсутствием вращения метиленовых групп $CH_2$ вокруг $\sigma$-связей в циклах, то есть меньшими конформационными возможностями.
Подытоживая рассмотренные факторы, можно расположить отдельные типы карбонильных соединений в ряды по их активности в реакциях нуклеофильного присоединения.
Уменьшение реакционной способности в реакциях $AN$:
--------------------------------------------------------------------------------------------------------------------------------------------------$>$
-
По длине углеводородного радикала
$H-HC=O$ $>$ $CH_3-CH=O$ $>$ $CH_3-CH_2-CH=O$ $>$ $CH_3-(CH_2)_n-CH=O$
-
По количеству электроноакцепторных заместителей
$CCl_3-CH=O$ $>$ $CHCl_2=O$ $>$ $CH_2Cl-CH=O$ $>$ $CH_3-CH=O$
-
По расположению электроноакцепторных заместителей
$CH_3-CHCl-CH=O$ $>$ $CH_2Cl-CH_2-CH=O$
-
По природе заместителя
$CH_3-CHCl-CH=O$ $>$ $CH_3-CH_2-CH=O$ $>$ $CH_3-CH(CH_3)-CH=O$
-
По положению карбонильной группы
Рисунок 6. -
По стерическим и конформационным факторам
Рисунок 7. -
При наличии ароматичности
Рисунок 8.
--------------------------------------------------------------------------------------------------------------------------------------------------$>$
Уменьшение реакционной способности в реакциях $A_N$