Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Вязкое трение и сопротивление среды

Сила сопротивления при движении в вязкой среде

В отличие от сухого вязкое трение характерно тем, что сила вязкого трения обращается в нуль одновременно со скоростью. Поэтому, как бы ни была мала внешняя сила, она может сообщить относительную скорость слоям вязкой среды.

Замечание 1

Следует иметь в виду, что, помимо собственно сил трения, при движении тел в жидкой или газообразной среде возникают так называемые силы сопротивления среды, которые могут быть гораздо значительнее, чем силы трения.

Правила поведения жидкости и газа в отношении трения не различаются. Поэтому все сказанное ниже относится в равной степени и к жидкостям, и к газам.

Сила сопротивления, возникающая при движении тела в вязкой среде обладает определенными свойствами:

  • отсутствует сила трения покоя - например, человек может сдвинуть с места плавающий многотонный корабль, просто потянув за канат;
  • сила сопротивления зависит от формы движущегося тела - корпус подводной лодки, самолёта или ракеты имеет обтекаемую сигарообразную форму --- для уменьшения силы сопротивления, наоборот, при движении полусферического тела вогнутой стороной вперёд сила сопротивления очень велика (пример --- парашют);
  • абсолютная величина силы сопротивления существенно зависит от скорости.

Сила вязкого трения

Изложим закономерности, которым подчиняются силы трения и сопротивления среды совместно, причём условно будем называть суммарную силу силой трения. Вкратце эти закономерности сводятся к следующему - величина силы трения зависит:

  • от формы и размеров тела;
  • состояния его поверхности;
  • скорости по отношению к среде и от свойства среды, называемого вязкостью.

Типичная зависимость силы трения от скорости тела по отношению к среде показана графически на рис. 1.~

График зависимости силы трения от скорости по отношению к среде

Рисунок 1. График зависимости силы трения от скорости по отношению к среде

«Вязкое трение и сопротивление среды» 👇
Помощь эксперта по теме работы
Найти эксперта
Решение задач от ИИ за 2 минуты
Решить задачу
Найди решение своей задачи среди 1 000 000 ответов
Найти

При малых скоростях движения сила сопротивления прямо пропорциональна скорости и сила трения растет линейно со скоростью:

$F_{mp} =-k_{1} v$ , (1)

где знак «-» означает, что сила трения направлена в сторону, противоположную скорости.

При больших скоростях линейный закон переходит в квадратичный т.е. сила трения начинает расти пропорционально квадрату скорости:

$F_{mp} =-k_{2} v^{2}$ (2)

Например, при падении в воздухе зависимость силы сопротивления от квадрата скорости имеет место уже при скоростях около нескольких метров в секунду.

Величина коэффициентов $k_{1} $ и $k_{2}$ (их можно назвать коэффициентами трения) в сильной степени зависит от формы, и размеров тела, состояния его поверхности и от вязких свойств среды. Например, для глицерина они оказываются гораздо большими, чем для воды. Так, парашютист при затяжном прыжке не набирает скорость безгранично, а с определённого момента начинает падать с установившейся скоростью, при которой сила сопротивления становится равна силе тяжести.

Значение скорости, при которой закон (1) переходит в (2), оказывается зависящим от тех же причин.

Пример 1

Два металлических шарика, одинаковых по размеру и различных по массе, падают без начальной скорости с одной и той же большой высоты. Какой из шариков быстрее упадёт на землю --- лёгкий или тяжёлый?

Дано: $m_{1} $, $m_{2} $, $m_{1} >m_{2} $.

Решение.

Шарики при падении не набирают скорость безгранично, а с определённого момента начинают падать с установившейся скоростью, при которой сила сопротивления (2) становится равна силе тяжести:

\[F_{mp} =k_{2} v^{2} =mg.\]

Отсюда установившаяся скорость:

\[v^{2} =\frac{mg}{k_{2} } .\]

Из полученной формулы следует, что у тяжёлого шарика установившаяся скорость падения больше. Значит, он дольше будет набирать скорость и потому быстрее достигнет земли.

Ответ: Тяжелый шарик быстрее достигнет земли.

Пример 2

Парашютист, летящий до раскрытия парашюта со скоростью $35$ м/с, раскрывает парашют, и его скорость становится равной $8$ м/с. Определите, какой примерно была сила натяжения строп при раскрытии парашюта. Масса парашютиста $65$ кг, ускорение свободного падения $10 \ м/с^2.$ Принять, что $F_{mp}$ пропорциональна $v$.

Дано: $m_{1} =65$кг, $v_{1} =35$м/с, $v_{2} =8$м/с.

Найти: $T$-?

Решение:



Рисунок 2.

До раскрытия парашюта парашютист имел

постоянную скорость $v_{1} =35$м/с, значит ускорения парашютиста было равно нулю.

Запишем второй закон Ньютона:

\[0=mg-kv_{1} \]

Отсюда:

\[k=\frac{mg}{v_{1} } .\]

После раскрытия парашюта парашютист имел постоянную скорость $v_{2} =8$м/с.

Второй закон Ньютона для этого случая будет выглядеть следующим образом:

\[0=mg-kv_{2} -T.\]

Тогда искомая сила натяжения строп будет равна:

$T=mg(1-\frac{v_{2} }{v_{1} } )\approx 500$ Н.

Ответ: $T=500$Н.

Дата последнего обновления статьи: 11.07.2024
Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot