Сила тяжести считается приложением к центру тяжести тела, определяемому путем подвешивания тела на нити за его различные точки. При этом точка пересечения всех направлений, которые отмечены нитью, и будет считаться центром тяжести тела.
Понятие силы тяжести
Сила тяжести $mg$ считается состоящей из гравитационного притяжения планеты, определяемого как $\frac{GMm}{r_2}$ и также центробежной силы инерции $mw2a$.
Силой тяжести в физике считают силу, действующую на любое физическое тело, пребывающее вблизи земной поверхности либо иного астрономического тела. Сила тяжести на поверхности планеты, по определению, будет складываться из гравитационного притяжения планеты, а также центробежной силы инерции, спровоцированной суточным вращением планеты.
Иные силы (например, притяжение Солнца и Луны) по причине их малости не учитываются или изучаются отдельно в формате временных изменений гравитационного поля Земли. Сила тяжести сообщает всем телам, в независимости от их массы, равное ускорение, представляя при этом консервативную силу. Она вычисляется на основании формулы:
$\vec {P} = m\vec{g}$,
где $\vec{g}$-ускорение, которое сообщается телу силой тяжести, обозначенное как ускорение свободного падения.
На тела, передвигающиеся относительно поверхности Земли, помимо силы тяжести, также оказывает непосредственное воздействие сила Кориолиса, представляющая силу, используемую при изучении движения материальной точки по отношению к вращающейся системе отсчета. Присоединение силы Кориолиса к воздействующим на материальную точку физическим силам позволит учитывать воздействие вращения системы отсчета на подобное движение.
Важные формулы для расчета
Соответственно закону всемирного тяготения, сила гравитационного притяжения, воздействующая на материальную точку с ее массой $m$ на поверхности астрономического сферически симметричного тела с массой $M$, будет определяться соотношением:
$F={G}\frac{Mm}{R^2}$, где:
- $G$—гравитационная постоянная,
- $R$— радиус тела.
Указанное соотношение оказывается справедливым, если предположить сферически симметричное распределение массы по объему тела. Тогда сила гравитационного притяжения направляется непосредственно к центру тела.
Модуль центробежной силы инерции $Q$, воздействующей на материальную частицу, выражен формулой:
$Q = maw^2$, где:
- $a$— расстояние между частицей и осью вращения астрономического тела, которое рассматривается,
- $w$—угловая скорость его вращения. При этом центробежная сила инерции становится перпендикулярной оси вращения и направленной в сторону от нее.
В векторном формате выражение для центробежной силы инерции записывается так:
$\vec{Q} = {mw^2\vec{R_0}}$, где:
$\vec {R_0}$— вектор, перпендикулярный оси вращения, который проведен от нее к указанной материальной точке, пребывающей вблизи поверхности Земли.
При этом сила тяжести $\vec {P}$ будет равнозначна сумме $\vec {F}$ и $\vec {Q}$:
$\vec{P} = \vec{F} = \vec{Q}$
Закон притяжения
Без присутствия силы тяжести стало бы невозможным происхождение многих, сейчас кажущихся нам естественными, вещей: так, не было бы схождение с гор лавин, течения рек, дождей. Атмосфера Земли может сохраняться исключительно благодаря воздействию силы тяжести. Планеты с меньшей массой, например, Луна или Меркурий, растеряли всю свою атмосферу довольно стремительными темпами и стали беззащитными перед потоками агрессивного космического излучения.
Атмосфера Земли сыграла решающее значение при процессе формирования жизни на Земле, ее. Помимо силы тяжести, на Земле воздействует также сила притяжения Луны. За счет ее близкого соседства (в космических масштабах), на Земле возможно существование отливов и приливов, а многие биологические ритмы являются совпадающими с лунным календарем. Силу тяжести, таким образом, нужно рассматривать в формате полезного и важного закона природы.
Закон притяжения считается универсальным и возможен к применению в отношении любых двух тел, обладающих определенной массой.
В ситуации, если масса одного взаимодействующего тела оказывается намного больше массы второго, говорится о частном случае гравитационной силы, для которого существует специальный термин, такой как «сила тяжести». Он применим к задачам, ориентированным на определение силы притяжения на Земле или иных небесных телах. При подставлении значения силы тяжести в формулу второго закона Ньютона, получаем:
$F = ma$
Здесь $а$ – ускорение силы тяжести, принуждающее тела стремиться друг к другу. В задачах, связанных с задействованием ускорения свободного падения, такое ускорение обозначают буквой $g$. С помощью собственного интегрального исчисления, Ньютону математически удалось доказать постоянную сосредоточенность силы тяжести в центре большего тела.