Ток является процессом, при протекании которого (под непосредственным влиянием электрического поля) начинает осуществляться движение некоторых заряженных частиц.
Такими заряженными частицами могут выступить разные элементы (все будет зависеть от ситуации). В случае с проводниками, например, в роли таковых частиц, выступят электроны.
Сила тока, таким образом, будет считаться движением заряженных частиц, ориентированных в одном направлении.
Понятие силы тока
Сила электрического тока будет представлять величину, характеризующую порядок движения электрических зарядов, численно равную количеству заряда $\delta q$, который при этом протекает сквозь определенную поверхность $S$, (представляющую поперечное сечение проводника) за единицу времени:
$I=\frac{\delta q}{\delta t}$
С целью определения силы тока $I$, требуется разделить электрический заряд $\delta q$, прошедший через поперечное сечение проводника за время $\delta t$, на это время.
Сила тока будет зависимой от заряда, переносимого посредством всех частиц, скорости их ориентированного в конкретном направлении движения и площади поперечного проводникового сечения.
Рассмотрим проводник с площадью поперечного сечения $S$. Заряд всех частиц обозначим $q_о$. В объеме проводника, ограниченного двумя сечениями, содержится $nS\delta l$ частиц, где $n$ представляет их концентрацию. Их общий заряд окажется таким:
$q={q_о}{nS\delta I}$
При условии движения частиц со средней скоростью $v$, за время $\delta t=\frac{\delta I}{v}$ все частицы, заключенные в рассматриваемом объеме, успеют пройти через второе поперечное сечение, что означает соответствие силы тока расчетам по такой формуле:
$I={q_о}{nvS}$, где:
- $I$ — обозначение силы электричества, измеряется в Амперах (А) или Кулонах/секунду;
- $q$ — заряд, идущий по проводнику, единица измерения Кулоны (Кл);
В СИ единицу силы тока считают основной, а называется она ампер (А). Измерительным прибором выбран амперметр, чей принцип работы основывается на магнитном действии тока.
При оценке скорости упорядоченного движения электронов внутри проводника, выполненная, согласно формуле для медного проводника при площади поперечного сечения в один квадратный миллиметр, мы получаем незначительную величину (0,1мм/с).
Отличие силы тока от напряжения
В физике различают такие понятия, как «сила тока» и «напряжение». Между ними существуют некоторые отличия, рассмотрение которых играет важное значение для понимания принципа действия силы тока.
Под «силой тока» понимается некоторое количество электричества, «напряжением», в то же время считается мера потенциальной энергии. При этом данные понятия достаточно сильно взаимозависимы. Важнейшими факторами, влияющими на них, являются:
- материал проводника;
- температура;
- внешние условия.
Различия можно наблюдать также и в способе их получения. Если в случае воздействия на электрические заряды создается напряжение, ток возникнет уже за счет действия напряжения между точками схемы. Также существует различие и в сравнении с таким понятием, как «энергопотребление». Оно будет заключаться именно в мощности. Так, если напряжение требуется для характеристики потенциальной энергии, то ток уже будет характеризовать энергию кинетическую.
Способы определения силы тока
Вычисляется сила тока на практике с задействованием специальных измерительных приборов либо посредством отдельных формул (при условии наличия исходных данных). Основной формулой, согласно которой рассчитывается сила тока, выглядит следующим образом:
$I=\frac{q}{t}$
Существование электричества может быть постоянным (например, содержащийся в батарейке ток), а также переменным (ток в розетке). Освещение помещений и работа всех приборов электрического типа происходит именно посредством воздействия переменного электричества. Основным отличием переменного тока от постоянного выступает его более сильная склонность к трансформации.
Наглядным примером действия переменного тока может также послужить эффект включения люминесцентных ламп. Так в процессе включения такой лампы начинает осуществляться движение заряженных частиц то вперед, то назад, что объясняет действие переменного тока. Именно данный вид электричества считается наиболее распространенным в быту. Соответственно закону Ома, силу тока рассчитывают по формуле (для участка электроцепи):
$I=\frac{U}{R}$
Сила тока, таким образом, оказывается прямо пропорциональна напряжению $U$, измеряемому в Вольтах, к участку цепи и обратно пропорциональной $R$-сопротивлению проводника указанного участка, выражаемому в Омах. Расчет силы электричества в полной цепи рассчитан таким образом:
$I=\frac{E}{R+r}$, где:
- $Е$ — электродвижущая сила, ЭДС, Вольт;
- $R$ — внешнее сопротивление, Ом;
- $r$ — внутреннее сопротивление, Ом.
Основными способами определения силы тока посредством систем приборов на практике являются следующие:
- Магнитоэлектрический измерительный метод. Его преимуществами выступают высокая чувствительность и точность показаний при незначительном энергопотреблении. Указанный способ применим исключительно при определении величины силы постоянного тока.
- Электромагнитный способ заключается в нахождении силы токов переменного и постоянного типов путем процесса трансформации из электромагнитного поля в сигнал магнитного модульного датчика.
- Косвенный метод направлен на определение за счет вольтметра напряжения при определенном сопротивлении.
С целью нахождения силы тока, на практике зачастую применяется специальный прибор амперметр. Такое устройство включается в разрывы электроцепи в требуемой точке измерения силы электрозаряда, прошедшего за некоторое время через сечение провода.
При определении величины силы малого электричества применяют миллиамперметры, микроамперметры, а также гальванометры, также подключаемые к определенному месту в цепи, где необходимо найти силу тока. Подключение может быть выполнено двумя способами:
- последовательным;
- параллельным.
Определение силы тока, который потребляется, считается не так часто востребованным, как измерение напряжения или сопротивления. В то же время, без вычисления физической величины силы тока становится невозможным расчет потребляемой мощности.