Электромагнитное устройство с осуществляемыми в нем, а также в окружающем его пространстве физическими процессами, в теории электрических цепей заменяет определенный расчетный эквивалент, называемый электроцепью.
Электромагнитные процессы в такой цепи описываются понятиями «ток», «ЭДС», «напряжение», «индуктивность», «емкость» и «сопротивление». Электрическая цепь существует при этом в двух вариантах:
- линейная:
- нелинейная.
Линейная электрическая цепь
Электрические цепи с постоянными параметрами считаются в физике такими цепями, в которых сопротивления резисторов $R$, индуктивность катушек $L$ и емкость конденсаторов $С$ будут постоянными и не зависимы от действующих в цепи напряжений, токов и напряжений (линейные элементы).
При условии независимости сопротивления резистора $R$ от тока, линейная зависимость между током и падением напряжения выражается на основании закона Ома, то есть:
$ur = R_хir$
Вольтамперная характеристика резистора при этом представляет собой прямую линию.
При независимости индуктивности катушки от величины тока, протекающего в ней, потокосцепление самоиндукции катушки $ф$ оказывается прямо пропорциональным этому току:
$ф = Lхil$
При условии независимости емкости конденсатора С от приложенного к обкладкам напряжения $uc$, накопленный на пластинах заряд $q$ и напряжение $uc$ оказываются связанными между собой через линейную зависимость.
При этом линейность сопротивления, индуктивности, а также емкости носит сугубо условный характер поскольку в действительности все реальные элементы электроцепи не линейны. При прохождении через резистор тока он будет нагреваться с изменением сопротивления.
При этом в нормальном рабочем режиме элементов подобные изменения обычно настолько несущественны, что при расчетах не берутся во внимание (такие элементы считаются в электрической цепи линейными).
Транзисторы, функционирующие в режимах, когда применяются прямолинейные участки их вольтамперных характеристик, условно также могут рассматриваться в формате линейных устройств.
Электрическая цепь, которая будет состоять из линейных элементов, называется линейной. Такие цепи характеризуют линейные уравнения для токов и напряжений и заменяются линейными схемами замещения.
Нелинейная электрическая цепь
Нелинейной электрической цепью считается та, которая содержит один или несколько нелинейных элементов.
Нелинейный элемент в электроцепи имеет параметры, зависимые от определяющих их величин. Нелинейная электрическая цепь имеет ряд важных отличий от линейной и в ней зачастую возникают специфические явления.
Нелинейные элементы характеризуют статические $R_{ст}$, $L_{ст}$, и $C_{ст}$ и дифференциальные $(R_д, L_д, C_д)$ параметры. Статические параметры нелинейного элемента определяются в виде отношения ординаты избранной точки характеристики к ее абсциссе:
$F_{ст} = \frac{yA}{YX}$
Дифференциальные параметры нелинейного элемента определяются в форме отношения малого приращения ординаты выбранной точки характеристики к малому приращению ее абсциссы:
$F{диф} = \frac{dy}{B}$
Методы расчета нелинейных цепей
Нелинейность параметров элементов усложняется расчетом цепи, поэтому рабочим участком выбирается или линейный, или близкий к нему участок характеристики. При этом рассматривается с допустимой точностью элемент как линейный. При невозможности этого применяются специальные методы расчета, такие, как:
- графический метод;
- метод аппроксимации.
Идея графического метода ориентирована на построение характеристик элементов цепи (вольт–амперной $u(i)$, вебер–амперной $ф(i)$ или кулон–вольтной $q(u)$) и их последующем графическом преобразовании с целью получения соответствующей характеристики для всей цепи или какого-то из ее участков.
Графический метод расчета считается наиболее простым и наглядным в использовании, обеспечивающим необходимую точность. В то же время, его применяют при незначительном количестве нелинейных элементов в цепи, поскольку он требует максимальной аккуратности при проведении графических построений.
Идея метода аппроксимации направлена на замену аналитическим выражением экспериментально полученной характеристики нелинейного элемента. Различают такие виды:
- аналитическая аппроксимация (при которой характеристика элемента заменяется на аналитическую функцию);
- кусочно–линейная (при ней характеристика элемента заменяется комплексом прямолинейных отрезков).
Точность аналитической аппроксимации определяет правильность выбора аппроксимирующей функции и подбор соответствующих коэффициентов. Преимуществом кусочно–линейной аппроксимации выступает простота при применении и возможность рассматривать элемент в формате линейного.
Более того, в ограниченном диапазоне изменений сигнала, где его, благодаря трансформациям, можно считать линейным (режим малого сигнала), нелинейный элемент (с допустимой точностью) можно заменить эквивалентным линейным активным двухполюсником:
$U = E + R_{диф} I$,
где $R_{диф}$ –дифференциальное сопротивление нелинейного элемента на линеаризуемом участке.