Разместить заказ
Вы будете перенаправлены на Автор24

Гравитационное поле и его характеристики

8-800-775-03-30 support@author24.ru
Все предметы / Физика / Динамика / Гравитационное поле и его характеристики
Содержание статьи

Напряженность гравитационного поля

Гравитационное взаимодействие осуществляется через гравитационное поле. Всякое тело изменяет свойства окружающего его пространства - создает в нем гравитационное поле. Это поле проявляет себя в том, что помещенное в него другое тело оказывается под действием силы. Об «интенсивности» гравитационного поля, очевидно, можно судить по величине силы, действующей в данной точке на тело с массой, равной единице. В соответствии с этим величину называют напряженностью гравитационного поля:

$G=\frac{F}{m} $. (1)

В этой формуле $F$ есть гравитационная сила, действующая на материальную точку массы $m$ в данной точке поля.

Размерность $G$ совпадает с размерностью ускорения. Напряженность поля тяготения вблизи поверхности Земли равна ускорению свободного падения $g$ (с точностью до поправки, обусловленной вращением Земли).

Из формулы (1) легко заключить, что напряженность поля, создаваемого материальной точкой массы $m'$, равна:

где $e_{r} $ --- орт радиус-вектора, проведенного из материальной точки в данную точку поля, $r$ - модуль этого радиус-вектора.

Потенциал гравитационного поля

Пусть гравитационное поле создается закрепленной в начале координат материальной точкой массы $m$. Тогда на материальную точку массы $m'$, находящуюся в точке с радиус-вектором $r$, будет действовать сила:

$F=Gm'=-\gamma \frac{mm'}{r^{2}} e_{r}$ (2)

Потенциальная энергия точки $m'$ определяется в этом случае выражением:

$U=-\gamma \frac{mm'}{r} $. (3)

(потенциальная энергия при $r=\infty $ принята равной нулю). Выражение (3) можно трактовать также как взаимную потенциальную энергию материальных точек $m'$и $m$.

Из (3) видно, что каждой точке поля, создаваемого материальной точкой $m$, соответствует определенное значение потенциальной энергии, которой обладает в этом поле материальная точка $m'$. Поэтому поле можно характеризовать потенциальной энергией, которой обладает в данном месте материальная точка с $m'=1$ Величину

Готовые работы на аналогичную тему

$\varphi =\frac{U}{m'} $. (4)

называют $потенциалом$ гравитационного поля. В этой формуле $U$ есть потенциальная энергия, которой обладает материальная точка массы $m'$ в данной точке поля.

Потенциал поля, созданного материальной точкой массы $m$на расстоянии $r$ от нее:

Зная потенциал поля, можно вычислить работу, совершаемую над частицей $m'$ силами поля при перемещении ее из положения 1 в положение 2. Эта работа будет равна:

$A_{1-2} =U_{1} -U_{2} =m(\varphi _{1} -\varphi _{2} )$. (5)

Согласно (4) сила, действующая на частицу $m'$, равна $F=m'G$, а потенциальная энергия этой частицы равна $U=m'\varphi $.

Так как $F=-\nabla U$, т. е. $m'G=-\nabla (m'\varphi )$. Вынеся из-под знака градиента константу $m'$ и сократив затем на эту константу, придем к соотношению между напряженностью и потенциалом гравитационного поля:

Принцип суперпозиции гравитационных полей

Принцип независимости действия сил для полей приводит к принципу их суперпозиции: гравитационное поле, создаваемое несколькими телами, равно геометрической сумме гравитационных полей, возбуждаемых этими телами в отдельности. Математически этот принцип выражается формулами:

На основе этих формул можно вычислить гравитационное поле любого тела. Для этого надо мысленно разбить тело на малые части, и подсчитать характеристики поля.

Гравитационное поле Земли является силовым полем, которое обусловлено притяжением ее массы и центробежной силой, возникающей как следствие вращения Земли. Гравитационное поле Земли:

  • зависит (хотя и в незначительной степени) от притяжения Луны, Солнца и прочих тел, а также массы земной атмосферы;
  • характеризуется силой тяжести, потенциалом и рядом различных производных (часть потенциала называют геопотенциалом - он обусловлен только притяжением Земли);
  • является основанием для определения геоида, который характеризует гравиметрическую фигуру Земли - по этой фигуре задаются высоты поверхности планеты;
  • по нему делают заключение о гидростатическом равновесном состоянии планеты и возникающих из-за этого напряжениях в её недрах, исследуют упругие свойства Земли;
  • помогает производить расчеты орбит искусственных спутников, траектории движения ракет;
  • аномалии поля помогают узнавать распределение неоднородностей по плотности в земной коре, верхней части мантии, проводить тектоническое районирование, искать полезные ископаемые.
Пример 1

Определить напряженность и потенциал гравитационного поля Земли вблизи ее поверхности.

Дано: $r=\cdot 6,4\cdot 10^{6}

Найти: $G$, $\varphi $-?

Решение:

Согласно второму закону Ньютона отношение силы тяготения, действующей на частицу, к массе этой частицы равно ускорению частицы:

\[a=\frac{F}{m} .\]

У поверхности Земли это ускорение есть ускорение свободного падения $g$- величина, постоянная для всех тел.

Таким образом, получаем:

\[a=\frac{F}{m} =g.\]

По формуле (1) напряженность гравитационного поля Земли равна:

\[G=\frac{F}{m} .\]

Эта формула выражает величину напряженности через отношение силы тяготения, действующей на частицу, к массе этой частицы.

Сравнивая выражения для ускорения частицы и напряженности гравитационного поля, получаем:

$G=g=9,8$ Н/кг.

Зная величину напряженности и выражения для напряженности $G=-\gamma \frac{m}{r^{2} } $ и потенциала $\varphi =-\gamma \frac{m}{r} $ гравитационного поля, найдем величину его потенциала:

\[\varphi =-Gr=-9,8\cdot 6,4\cdot 10^{6} =-6,2\cdot 10^{7} 6/:3.\]

Ответ: $G=9,8$ Н/кг, $\varphi =-6,2\cdot 10^{7} 6/:3.$

Сообщество экспертов Автор24

Автор этой статьи

Автор статьи

Алексей . Малеев

Эксперт по предмету «Физика»

Статья предоставлена специалистами сервиса Автор24
Автор24 - это сообщество учителей и преподавателей, к которым можно обратиться за помощью с выполнением учебных работ.
как работает сервис