Вронскиан
определитель, состоящий из функций f1 (x), f2 (x),..., fn (x) и их производных до (n − 1)-го порядка
линейное преобразование векторного пространства, при котором сохраняется объем; определяется в любом базисе унимодулярной матрицей
В статье рассматривается обобщение понятия функции периодической автокорреляции на случай комплекснозначных последовательностей, индексированных конечной абелевой группой. Перенесены известные результаты теории последовательностей, в том числе границы Велча и Сарвате. Вводится понятие преобразования эквивалентности, изучается вопрос об обобщении известных преобразований эквивалентности. Вводится новое преобразование эквивалентности, а именно группа перестановок индексов последовательности с образующими специального вида. Каждая образующая получена умножением индексов последовательности на обратимый элемент кольца, аддитивной группой которого является индексная группа последовательности. Описаны известные конструкции унимодулярных дельта-коррелированных последовательностей длин Предложены новые конструкции унимодулярных дельта-коррелированных последовательностей с индексными группами
Данная статья продолжает серию работ, посвященных описанию обратимых обыкновенных дифференциальных операторов и их обобщений. Обобщения представляют собой обратимые отображения фильтрованных модулей, порожденных одним дифференцированием, и называются обратимыми D-операторами. Такими операторами являются, в частности, обратимые обыкновенные линейные дифференциальные операторы, обратимые линейные разностные операторы с периодическими коэффициентами, отображения, определенные унимодулярными матрицами, а также С-преобразования систем с управлением.
определитель, состоящий из функций f1 (x), f2 (x),..., fn (x) и их производных до (n − 1)-го порядка
квадратные матрицы A и B одинакового порядка, для которых оба произведения AB и BA имеют смысл и AB = BA
число, обладающее свойствами: a ± 0 = a, a ⋅ 0 = 0; деление на нуль невозможно
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне