Аксиома III (динамика)
аксиома независимости действия сил; если на материальную точку или тело действует несколько сил, то, ускорение, получаемое точкой или телом, будет такое же, как и при действии одной силы, равной геометрической сумме сил.
пару можно как угодно переносить в плоскости ее действия, изменяя плечо и величину сил, но сохраняя ее момент.
Действие каждой силы на абсолютно твердое тело не меняется при переносе силы вдоль линии ее действия...
По своей природе сила - векторная величина и в общем случае она характеризуется:
направлением и линией...
В случае равновесия системы сил, лежащих в одной плоскости, например, $0xy$, получим
$ \sum \limits_...
иную точку тела, прибавляя силу с периодом, равным периоду переносимой силы касательно точки, куда она переносится...
Указанное преобразование – это сходящаяся сумма и система сил моментов пар сил.
аксиома независимости действия сил; если на материальную точку или тело действует несколько сил, то, ускорение, получаемое точкой или телом, будет такое же, как и при действии одной силы, равной геометрической сумме сил.
многочленное уравнение для разрешённых частот гармонических колебаний при решении задачи малых (линейных) колебаний.
стержень нагружен двумя одинаковыми по величине растягивающими силами, направленными в противоположные стороны вдоль прямой, не проходящей через центры тяжести поперечных сечений.
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне