Абелев интеграл
интеграл вида ∫f (x, y) dx, (от a до b), где f — рациональная функция от двух переменных и y — алгебраическая функция от x
кватернионы z = a + bi + cj + dk и z = a − bi − cj − dk, сумма и произведение которых являются действительными числами; произведение z · z̅ = a2 + b2 + c2 + d2 называется нормой кватерниона z (или сопряженного кватерниона z)
Методом математической индукции строится процедура векторного представления ассоциативных произведений сопряженных кватернионных матриц. Находятся развернутые символические формулы, устанавливающие эквивалентные соответствия ассоциативных произведений кватернионных матриц и мультипликативных композиций векторной алгебры
Исследуется структура результирующих матриц, выделяются симметричные и кососимметричные составляющие, находятся матрицы эквивалентные и не эквивалентные кватернионам. Для мультипликативных композиций кватернионных матриц устанавливаются правила полного, внутреннего и внешнего транспонирования, определяются коммутативные, ортогональные, обратные матрицы
интеграл вида ∫f (x, y) dx, (от a до b), где f — рациональная функция от двух переменных и y — алгебраическая функция от x
точка x0 такая, что f(x0) = 0; можно трактовать как решение уравнения f(x) = 0
истинный нормальный делитель
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне