Вронскиан
определитель, состоящий из функций f1 (x), f2 (x),..., fn (x) и их производных до (n − 1)-го порядка
истинный нормальный делитель
электрического оборудования либо отдельных цепей, входящих в состав энергетической системы, при аварийных или нормальных...
:
Номинальный электрический ток — ток протекающий через выключатель, при котором он может работать нормально...
Собственное время отключения....
дугогасительная камера; 3 — шунтирующий резистор; 4 — главные контакты; 5 — отделитель; 6 — емкостный делитель...
зависимости от конструкции высоковольтные воздушные выключатели делятся на выключатели с газонаполненным делителем
Известно, что нахождение решений однородной линейной дифференциальной системы с постоянной матрицей A сводится к алгебраической задаче нахождения нормальной жордановой формы J матрицы A и определения матрицы Р такой, что J = P-1AP. Нахождение матрицы J опирается на теорию элементарных делителей характеристической матрицы А -, что приводит к так называемой полной проблеме собственных значений, состоящей в нахождении всех собственных значений и соответствующих им собственных векторов матрицы А. Решение этой проблемы даже в случаях систем не очень высоких порядков сопряжено со значительными трудностями, возникающими уже на стадии получения характеристического уравнения путем развертывания определителя характеристической матрицы. В 1969 году Р. Беллман писал, что «в настоящее время не имеется простых методов нахождения собственных значений и собственных векторов матриц большого размера» [1]. За минувшие с тех пор тридцать лет существенных изменений не произошло. В настоящей работе мы пы...
Известно, что нахождение решений однородной линейной дифференциальной системы с постоянной матрицей A сводится к алгебраической задаче нахождения нормальной жордановой формы J матрицы A и определения матрицы Р такой, что J = P-1AP. Нахождение матрицы J опирается на теорию элементарных делителей характеристической матрицы А -, что приводит к так называемой полной проблеме собственных значений, состоящей в нахождении всех собственных значений и соответствующих им собственных векторов матрицы А. Решение этой проблемы даже в случаях систем не очень высоких порядков сопряжено со значительными трудностями, возникающими уже на стадии получения характеристического уравнения путем развертывания определителя характеристической матрицы. В 1969 году Р. Беллман [1] писал, что "в настоящее время не имеется простых методов нахождения собственных значений и собственных векторов матриц большого размера". За минувшие с тех пор тридцать лет существенных изменений не произошло. В настоящей рабо...
определитель, состоящий из функций f1 (x), f2 (x),..., fn (x) и их производных до (n − 1)-го порядка
преобразование плоскости (пространства), переводящее каждую точку P в такую точку P′, лежащую на луче OP , что OP̅ · OP̅′ = c, где O — фиксированная точка (центр, или полюс инверсии) и c ≠ 0 — постоянная (коэффициент, или степень инверсии)
точка x0 такая, что f(x0) = 0; можно трактовать как решение уравнения f(x) = 0
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне