Геометрический ряд
числовой сходящийся ряд вида (|q| < 1): a1 + a1q + … + a1qn + …; сумма его равна a1/1 - q
многоугольник, все внутренние углы которого конгруэнтны
В настоящей статье дано описание полуправильных (равносторонних и равноугольных) многоугольников, которые могут быть расположены на каждом из 11 правильных паркетов. Приведены основные идеи и ключевые моменты доказательств, также статья снабжена большим количеством иллюстраций.
Изучение паркетогранников началось сразу после завершения классификации выпуклых многогранников с правильными гранями полвека назад. Паркетогранником назовём выпуклый многогранник, обладающий правильными или паркетными гранями. Напомним, паркетным называется выпуклый многоугольник, составленный из конечного и большего единицы числа равноугольных многоугольников. Паркетные многоугольники классифицированы: существует 23 их типа. Четыре из них могут быть представлены правильными многоугольниками, а ещё пять имеют равносторонние представители, составленные так из правильных многоугольников, что каждая вершина такого правильного многоугольника служит и вершиной паркетного. Около десяти лет назад стали известны с точностью до подобия все паркетогранники, которые кроме правильных могут обладать и указанными пятью паркетными гранями. Выдвинута гипотеза, приводящая нахождению всех равнорёберных паркетогранников. Без рассмотрения соединений по однотипным граням невозможно получить все типы па...
числовой сходящийся ряд вида (|q| < 1): a1 + a1q + … + a1qn + …; сумма его равна a1/1 - q
для любого набора попарно простых чисел m1, m2, ... , mn найдется целое число x, дающее заданные остатки a1, a2, ... , an при делении на m1, m2, ... , mn, т. е. при каждом k x ≡ ak (mod mk)
аксиальный вектор
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне