Виды геометрии движения тел:
по гиперболе;
по параболе;
по окружности;
по эллипсу;
по квадратрисе;
по... ГиперболаГиперболой называют геометрическое место точек на плоскости, для которых абсолютное значение... Гипербола является:
квадрикой;
коническим сечением.... Равнобочнаягипербола – такая гипербола, у которой a=b.... Равнобочнуюгиперболу принято выражать в прямоугольной системе координат в уравнении $xy = a^{2}$.
Классическая трактовка движения как движения точки (центра масс трансляционное движение) и движения вокруг точки (вокруг центра масс спинорное движение) дополнена одновременным кручением равнобочной гиперболы вокруг двух ортогональных осей, названным двуторсионным тонким полем векторного поля. Показано, что в порождаемом им скалярном поле пространства возможных состояний двуторсионных тонких полей представляют собой три пространственных полых резонатора, описываемых геометрией псевдосфер Н. И. Лобачевского, вписанных одна в другую. Введенные понятия проиллюстрированы на примере пары биосфера-ноосфера В. И. Вернадского, интерпретированной своеобразной „матрешкой“ диполя с чередующимися псевдосферическими резонаторами и сферическими защитными куполами.
Представлен анализ переходных процессов в скалярных полях динамических систем, порожденных эффектом „выколотых“ точек этих полей. Получено уравнение движения центра смещения скалярного поля динамической системы в виде равнобочной гиперболы с переменным коэффициентом (числителем), квантованное „выколотыми“ точками центра смещения. Квантовый характер движения продемонстрирован с помощью топологической карты знаковых признаков движения на примере аттрактора Лоренца. Предложена нотная запись прямого и обратного движений с их визуализацией минимальными средствами.
преобразование плоскости (пространства), переводящее каждую точку P в такую точку P′, лежащую на луче OP , что OP̅ · OP̅′ = c, где O — фиксированная точка (центр, или полюс инверсии) и c ≠ 0 — постоянная (коэффициент, или степень инверсии)
Выбери определение из предложенных или загрузи свое
Тренажер от Автор24 поможет тебе выучить термины с помощью удобных и приятных
карточек
Нужна помощь с заданием?
Эксперт возьмёт заказ за 5 мин, 400 000 проверенных авторов помогут сдать работу
в срок. Гарантия 20 дней, поможем начать и проконсультируем в Telegram-боте Автор24.
Оставляя свои контактные данные и нажимая «Попробовать в Telegram», я соглашаюсь пройти процедуру
регистрации на Платформе, принимаю условия
Пользовательского соглашения
и
Политики конфиденциальности
в целях заключения соглашения.