Класс алгебраической кривой
максимальное число касательных, которые можно провести к данной алгебраической кривой из произвольной точки P плоскости, не лежащей на этой кривой
подмножество покрытия рассматриваемого множества, которое также является покрытием этого множества
Рассматриваются естественные обобщения свойств сцепленности семейств и суперкомпактности топологических пространств. Исследуется усиленная сцепленность, когда постулируется непустота пересечения наперед заданного числа множеств семейства. Подобным же образом модифицируется суперкомпактность: постулируется существование открытой предбазы, для которой из любого покрытия (множествами данной предбазы) можно извлечь подпокрытие с заданным числом множеств (точнее, не большим, чем заданное число). Разумеется, среди семейств, обладающих усиленной сцепленностью, выделяются максимальные в упорядоченности по включению. При естественных и, по сути, «минимальных» условиях на первоначальную измеримую структуру среди упомянутых максимальных семейств непременно содержатся ультрафильтры. Последние образуют подпространства в смысле естественных топологий, отвечающих идейно схемам Волмэна и Стоуна. Максимальные семейства с усиленной сцепленностью в топологии волмэновского типа обладают вышеупомянутым ...
максимальное число касательных, которые можно провести к данной алгебраической кривой из произвольной точки P плоскости, не лежащей на этой кривой
порождающая грамматика
аксиальный вектор
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне