Источник векторного поля
точка, в которой дивергенция положительна
непрерывный линейный оператор P из гильбертова пространства H на его линейное подпространство, такой, что при каждом x ∈ H элементы P x и x − P x ортогональны
Часто находит применение хорошо известная формула для ортопроектора: где A столбцовая матрица полного ранга; столбцы матрицы A задают подпространство, на которое выполняется ортогональное проектирование. В данной статье предлагается выражение для косого проектора через две матрицы полного ранга A и B, столбцы которых задают образ и ядро этого проектора: От других аналогичных выражений [6, 17] данная формула отличается симметрией: матрица эрмитова. При выводе этого результата, а также многих других, оказалась очень полезна простая лемма: если A столбцовая матрица полного ранга, то остается матрицей полного ранга тогда и только тогда, когда {A}∩{B} = 0. Известно, что псевдообратная матрица от произведения любых двух эрмитовых проекторов есть некоторый проектор. В данной работе определены образ и ядро этого проектора для произвольных эрмитовых проекторов. Получен важный критерий того, что два подпространства, задаваемые столбцами матриц A и B, пересекаются по нулевому вектору.
точка, в которой дивергенция положительна
максимальное число касательных, которые можно провести к данной алгебраической кривой из произвольной точки P плоскости, не лежащей на этой кривой
аксиальный вектор
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве