Испытание
термин классической теории вероятностей, при аксиоматическом подходе определяемый как любое разбиение пространства элементарных событий на попарно несовместимые случайные события, которые называются исходами испытания
непрерывный линейный оператор P из гильбертова пространства H на его линейное подпространство, такой, что при каждом x ∈ H элементы P x и x − P x ортогональны
Часто находит применение хорошо известная формула для ортопроектора: где A столбцовая матрица полного ранга; столбцы матрицы A задают подпространство, на которое выполняется ортогональное проектирование. В данной статье предлагается выражение для косого проектора через две матрицы полного ранга A и B, столбцы которых задают образ и ядро этого проектора: От других аналогичных выражений [6, 17] данная формула отличается симметрией: матрица эрмитова. При выводе этого результата, а также многих других, оказалась очень полезна простая лемма: если A столбцовая матрица полного ранга, то остается матрицей полного ранга тогда и только тогда, когда {A}∩{B} = 0. Известно, что псевдообратная матрица от произведения любых двух эрмитовых проекторов есть некоторый проектор. В данной работе определены образ и ядро этого проектора для произвольных эрмитовых проекторов. Получен важный критерий того, что два подпространства, задаваемые столбцами матриц A и B, пересекаются по нулевому вектору.
термин классической теории вероятностей, при аксиоматическом подходе определяемый как любое разбиение пространства элементарных событий на попарно несовместимые случайные события, которые называются исходами испытания
эрмитова матрица
функция ex, часто обозначаемая как exp x
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве