Геометрический ряд
числовой сходящийся ряд вида (|q| < 1): a1 + a1q + … + a1qn + …; сумма его равна a1/1 - q
топологическое пространство, являющееся компактным множеством
В статье изучаются обобщения паракомпактных пространств, основанные на so-множествах, т.е. множествах, являющихся объединениями открытых и нигде не плотных множеств. Целью работы является установление связи между so-паракомпактными пространствами и другими обобщениями паракомпактных пространств и выяснение условий, при которых so-паракомпактное пространство является бикомпактным. Поставленные задачи решаются методами общей топологии. Доказано, что секвенциально компактное so-паракомпактное пространство бикомпактно. Доказано, что so-паракомпактность сохраняется при умножении на бикомпакт. Ранее другими авторами было введено понятие S-паракомпактного пространства, основанное на полуоткрытых множествах. Класс so-паракомпактных пространств шире класса S-паракомпактных пространств. В данной работе показано, что существуют so-паракомпактные пространства, не являющиеся S−паракомпактными.
числовой сходящийся ряд вида (|q| < 1): a1 + a1q + … + a1qn + …; сумма его равна a1/1 - q
знакочередующийся ряд 1 + 1/3 + 1/5 + 1/7 +…, сходящийся к π/4
процесс составления или вычисления суммы
Наведи камеру телефона на QR-код — бот Автор24 откроется на вашем телефоне