Вронскиан
определитель, состоящий из функций f1 (x), f2 (x),..., fn (x) и их производных до (n − 1)-го порядка
для любого набора попарно простых чисел m1, m2, ... , mn найдется целое число x, дающее заданные остатки a1, a2, ... , an при делении на m1, m2, ... , mn, т. е. при каждом k x ≡ ak (mod mk)
Количество обратимых матриц может быть определено при помощи китайской теоремы об остатках.
Представлен вывод достаточных условий целочисленной разрешимости системы Ах = r в терминах перманентов подматриц матрицы А для случая, когда А-базисная матрица. В Китайской теореме об остатках А является частным случаем базисной матрицы. Предложенный вывод можно расширить на случай, когда пропозициональная формула, описывающая схему знаков А, оказывается минимально невыполнимой КНФ.
Обосновывается применение модулярной арифметики, в частности, Китайской теоремы об остатках для параллельных вычислений с целочисленными матрицами; преимущества модулярных методов демонстрируются результатами эксперементов, проведенных на кластере МСЦ с использованием интерфейса MPI.
определитель, состоящий из функций f1 (x), f2 (x),..., fn (x) и их производных до (n − 1)-го порядка
число, обладающее свойствами: a ± 0 = a, a ⋅ 0 = 0; деление на нуль невозможно
выборочные квантили порядков k/100, где k = 1, 2, ... , 99
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве