Испытание
термин классической теории вероятностей, при аксиоматическом подходе определяемый как любое разбиение пространства элементарных событий на попарно несовместимые случайные события, которые называются исходами испытания
пространство X′ линейных функционалов, определенных на данном векторном пространстве X
(подобно сопоставлению в классической механике состояниям точек 6N-мерного фазового пространства)....
Они определяются в виде алгебры операторов в гильбертовом пространстве с операцией эрмитова сопряжения...
Такая же структура сопряжения в гильбертовом пространстве на операторах позволяет построить представления...
Операторная алгебра представляет множество операторов, на котором определяются топологические и алгебраические...
на гильбертовых пространствах (для изучения нормальных, самосопряженных, унитарных, положительных и
Рассматриваются параллельные методы декомпозиции областей для решения трехмерных сеточных краевых задач, получаемых в результате конечно-элементных или конечно-объемных аппроксимаций. Данные проблемы являются «узким горлышком» среди различных этапов математического моделирования, поскольку современные требования к разрешающей способности сеточных алгоритмов приводят к необходимости решения систем линейных алгебраических уравнений с числом неизвестных в сотни миллионов и с очень плохой обусловленностью, что вызывает экстремальную ресурсоемкость расчетов. Описываются многопараметрические варианты алгоритмов с различной размерностью декомпозиции — одномерной, двумерной и трехмерной, — с пересечением или без пересечения подобластей, при использовании величин перехлеста как оптимизирующих параметров, а также с различными видами внутренних условий сопряжения на смежных границах (Дирихле, Неймана или третьего рода). Исследуются вариационные итерационные процессы крыловского типа в простран...
Исследование линейных групп Ли сопряжено, с одной стороны, с более общей задачей изучения произвольных линейных групп, с другой стороны, линейные группы Ли тесно связаны с алгебраическими группами. Цель работы - описание с точностью до сопряженности подалгебр алгебры Ли д[(4, С). Определены основные понятия: линейная алгебра Ли, разделяющая алгебра Ли, разделяющая оболочка, автосопряжение, специальное автосопряжение, подалгебра Леви - Картана, линейный нильрадикал, подалгебра Мальцева. Приведен алгоритм классификации разделяющих алгебр Ли с данным линейным нильрадикалом, а именно: сначала строится нормализатор нильпотентной подалгебры, далее фиксируется некоторая подалгебра Мальцева нормализатора и строится разделяющая алгебра Ли, потом, с точностью до сопряженности, описываются подалгебры алгебры Мальцева, являющиеся редуктивными, и выписываются разделяющие подалгебры. Затем решается задача классификации неразделяющих линейных алгебр Ли с данной разделяющей оболочкой. С применением...
термин классической теории вероятностей, при аксиоматическом подходе определяемый как любое разбиение пространства элементарных событий на попарно несовместимые случайные события, которые называются исходами испытания
квадратные матрицы A и B одинакового порядка, для которых оба произведения AB и BA имеют смысл и AB = BA
точка x0 такая, что f(x0) = 0; можно трактовать как решение уравнения f(x) = 0
Возможность создать свои термины в разработке
Еще чуть-чуть и ты сможешь писать определения на платформе Автор24. Укажи почту и мы пришлем уведомление с обновлением ☺️
Включи камеру на своем телефоне и наведи на Qr-код.
Кампус Хаб бот откроется на устройстве