Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Справочник от Автор24
Найди эксперта для помощи в учебе
Найти эксперта
+2

Радиус описанной около треугольника окружности

В этой статье приведены формулы для расчёта радиуса описанной около треугольника окружности для различных случаев, а именно: для прямоугольного, равнобедренного и равностороннего треугольников.

Также приведена формула для описанной около треугольника окружности в общей форме и добавлены онлайн-калькуляторы для быстрого расчёта.

Определение 1

Описанной около треугольника окружностью называется окружность, внутри которой расположен треугольник, причём все три вершины этого треугольника лежат на окружности.

Ниже приведён онлайн-калькулятор для расчёта радиуса описанной окружности для любого треугольника. Для того чтобы воспользоваться им — введите имеющиеся данные в поля для ввода онлайн-калькулятора.

Радиус описанной около треугольника окружности через стороны

Радиус описанной около треугольника окружности через стороны

Чтобы определить радиус описанной вокруг треугольника окружности, нужно воспользоваться формулой:

R=abc4P(Pa)(Pc)(Pb)  (1), причём

P — это полупериметр треугольника.

Он определяется по формуле:

P=12(a+b+c), где

a,b,c — стороны треугольника.

Рассмотрим пример на поиск радиуса описанной около треугольника окружности.

Пример 1

Задача

Дан треугольник со сторонами 3,4,5 см. Найдите, чему равен радиус описанной вокруг него окружности.

Решение:

Сосчитаем полупериметр:

P=12(3+4+5)=6 см.

Теперь воспользуемся формулой (1):

R = \frac{3 \cdot 4 \cdot 5} {4 \cdot \sqrt{6 \cdot (6 - 3) \cdot (6 - 4) \cdot (6 — 5)}} = 2,5 см.

Результат совпадает с ответом онлайн-калькулятора, следовательно, задача решена правильно.

Также существуют формулы для расчёта радиуса описанной около прямоугольного и равнобедренного треугольников окружностей.

Радиус описанной около прямоугольного треугольника окружности через стороны

Радиус описанной около прямоугольного треугольника окружности через стороны

Для прямоугольного треугольника радиус описанной окружности вычисляется по формуле:

 

R = \frac12 \cdot \sqrt{d^2 + b^2}, здесь

 

d, b — катеты прямоугольного треугольника.

Радиус описанной около равнобедренного треугольника окружности через стороны

Радиус описанной около равнобедренного треугольника окружности через стороны

В этом случае радиус окружности определяется по формуле:

 

R = \frac{d^2}{\sqrt{4d^2 — b^2}}, здесь

d — длина боковой стороны равнобедренного треугольника;

b — длина основания.

Радиус описанной около равностороннего треугольника окружности через сторону

Радиус описанной около равностороннего треугольника окружности через сторону

В этом случае радиус определяется через формулу:

R = \frac{a}{\sqrt3}, здесь

a — сторона равностороннего треугольника.

Рассмотрим в качестве второго примера поиск радиуса описанной окружности через сторону равностороннего треугольника.

Пример 2

Задача

В равностороннем треугольнике сторона a равна 3 см. Чему равен радиус описанной вокруг него окружности?

Решение:

R = \frac{a}{\sqrt3} = 1, 73 см.

Ответ совпадает с ответом онлайн-калькулятора, а значит, решение найдено верно.

Дата написания статьи: 18.06.2019
Все самое важное и интересное в Telegram

Все сервисы Справочника в твоем телефоне! Просто напиши Боту, что ты ищешь и он быстро найдет нужную статью, лекцию или пособие для тебя!

Перейти в Telegram Bot
AI Assistant