Разместить заказ
Вы будете перенаправлены на Автор24

Площадь поверхности параллелепипеда

Все предметы / Калькуляторы / Площадь поверхности параллелепипеда

На этой странице вы узнаете, как выглядят формулы для расчёта полной и боковой площади поверхности параллелепипеда. Также на страницу добавлен онлайн-калькулятор для расчёта площади прямоугольного параллелепипеда.

Определение 1

Параллелепипед является разновидностью призмы, основания которой представляют собой параллелограммы. Также параллелепипедами называют призмы, в основании которых лежат многогранники, а все грани являются параллелограммами.

Наиболее знакомый всем вид параллелепипеда — это прямоугольный параллелепипед. Все его грани являются прямоугольниками.

Для расчёта полной площади прямоугольного параллелепипеда введите значение сторон и высоты в поля для ввода.

Площадь поверхности параллелепипеда через стороны

Площадь поверхности параллелепипеда через стороны

Для прямоугольного параллелепипеда площадь поверхности определяется по формуле:

$S = 2 \cdot (a \cdot b + b \cdot h + a \cdot h)$, здесь

$a, b$ — стороны основания параллелепипеда;

$h$ — высота параллелепипеда.

Разберём пример на нахождение полной площади параллелепипеда.

Пример 1

Задача

Стороны основания прямоугольного параллелепипеда равны $a = 3$ см и $b = 7$ см, а его высота $h$ равна $4$ см. Чему равна полная площадь поверхности параллелепипеда?

Решение:

Воспользуемся вышеприведённой формулой:

$S = 2 \cdot (3 \cdot 4 + 7 \cdot 4 + 3 \cdot 7) = 122$ кв. см.

Результаты совпадают с решением онлайн-калькулятора, а значит, ответ найден верно.

Также используя следующий онлайн-калькулятор, вы сможете рассчитать площадь боковой поверхности прямоугольного параллелепипеда.

Площадь боковой поверхности прямоугольного параллелепипеда через стороны

Площадь боковой поверхности прямоугольного параллелепипеда через стороны

Площадь боковой поверхности прямоугольного параллелепипеда определяется по формуле:

$S = 2 \cdot h \cdot (a + b)$, где

$h$ — длина ребра параллелепипеда;

$a, b$ — стороны основания.

Рассчитаем для примера площадь боковой поверхности для параллелепипеда из предыдущей задачи.

Пример 2

Задача

$a = 3$ см, $b = 7$ см, а высота $h = 4$ см. Чему равна боковая площадь поверхности прямоугольного параллелепипеда?

Решение:

$S_б = 2 \cdot 4 \cdot (3 + 7) = 80$ кв. см.

Решение соответствует решению, полученному с помощью онлайн-калькулятора, а значит, ответ правильный.

Статья предоставлена специалистами сервиса Автор24
Автор24 - это сообщество учителей и преподавателей, к которым можно обратиться за помощью с выполнением учебных работ.
как работает сервис