Правило сложения отрицательных чисел
Если вспомнить урок математики и тему «Сложение и вычитание чисел с разными знаками», то для сложения двух отрицательных чисел необходимо:
- выполнить сложение их модулей;
- дописать к полученной сумме знак «–».
Согласно правилу сложения можно записать:
$(−a)+(−b)=−(a+b)$.
Правило сложения отрицательных чисел применяется к отрицательным целым, рациональным и действительным числам.
Сложить отрицательные числа $−185$ и $−23 \ 789.$
Решение.
Воспользуемся правилом сложения отрицательных чисел.
Найдем модули данных чисел:
$|-185|=185$;
$|-23 \ 789|=23 \ 789$.
Выполним сложение полученных чисел:
$185+23 \ 789=23 \ 974$.
Поставим знак $«–»$ перед найденным числом и получим $−23 \ 974$.
Краткая запись решения: $(−185)+(−23 \ 789)=−(185+23 \ 789)=−23 \ 974$.
Ответ: $−23 \ 974$.
При сложении отрицательных рациональных чисел их необходимо преобразовать к виду натуральных чисел, обыкновенных или десятичных дробей.
Сложить отрицательные числа $-\frac{1}{4}$ и $−7,15$.
Решение.
Согласно правилу сложения отрицательных чисел, сначала необходимо найти сумму модулей:
$|-\frac{1}{4}|=\frac{1}{4}$;
$|-7,15|=7,15$.
Полученные значения удобно свести к десятичным дробям и выполнить их сложение:
$\frac{1}{4}=0,25$;
$0,25+7,15=7,40$.
Поставим перед полученным значением знак $«–»$ и получим $–7,4$.
Краткая запись решения:
$(-\frac{1}{4})+(−7,15)=−( \frac{1}{4}+7,15)=–(0,25+7,15)=−7,4$.
Ответ: $–7,4$.
Как вычитать числа с разными знаками
Правило сложения чисел с противоположными знаками:
Для сложения положительного и отрицательного числа необходимо:
- вычислить модули чисел;
выполнить сравнение полученных чисел:
- если они равны, то исходные числа являются противоположными и их сумма равна нулю;
- если они не равны, то нужно запомнить знак числа, у которого модуль больше;
из большего модуля вычесть меньший;
- перед полученным значением поставить знак того числа, у которого модуль больше.
Сложение чисел с противоположными знаками сводится к вычитанию из большего положительного числа меньшего отрицательного числа.
Правило сложения чисел с противоположными знаками выполняется для целых, рациональных и действительных чисел.
Сложить числа $4$ и $−8$.
Решение.
Требуется выполнить сложение чисел с противоположными знаками. Воспользуемся соответствующим правилом сложения.
Найдем модули данных чисел:
$|4|=4$;
$|-8|=8$.
Модуль числа $−8$ больше модуля числа $4$, т.е. запомним знак $«–»$.
Далее от большего модуля отнимем меньший модуль, получим:
$8−4=4$.
Поставим знак $«–»$, который запоминали, перед полученным числом, и получим $−4.$
Краткая запись решения:
$4+(–8) = –(8–4) = –4$.
Ответ: $4+(−8)=−4$.
Для сложения рациональных чисел с противоположными знаками их удобно представить в виде обыкновенных или десятичных дробей.
Вычитание чисел с разными и отрицательными знаками
Правило вычитания отрицательных чисел:
Для вычитания из числа $a$ отрицательного числа $b$ необходимо к уменьшаемому $a$ добавить число $−b$, которое является противоположным вычитаемому $b$.
Согласно правилу вычитания можно записать:
$a−b=a+(−b)$.
Данное правило справедливо для целых, рациональных и действительных чисел. Правило можно использовать при вычитании отрицательного числа из положительного числа, из отрицательного числа и из нуля.
Вычесть из отрицательного числа $−28$ отрицательное число $−5$.
Решение.
Противоположное число для числа $–5$ – это число $5$.
Согласно правилу вычитания отрицательных чисел получим:
$(−28)−(−5)=(−28)+5$.
Выполним сложение чисел с противоположными знаками:
$(−28)+5=−(28−5)=−23$.
Краткая запись решения: $(−28)−(−5)=(−28)+5=−(28−5)=−23$.
Ответ: $(−28)−(−5)=−23$.
При вычитании отрицательных дробных чисел необходимо выполнить преобразование чисел к виду обыкновенных дробей, смешанных чисел или десятичных дробей.
Сложение и вычитание чисел с разными знаками
Правило вычитания чисел с противоположными знаками совпадает с правилом вычитания отрицательных чисел.
Вычесть положительное число $7$ из отрицательного числа $−11$.
Решение.
Противоположное число для числа $7$ – это число $–7$.
Согласно правилу вычитания чисел с противоположными знаками получим:
$(−11)−7=(–11)+(−7)$.
Выполним сложение отрицательных чисел:
$(−11)+(–7)=−(11+7)=−18$.
Краткая запись решения: $(−28)−(−5)=(−28)+5=−(28−5)=−23$.
Ответ: $(−11)−7=−18$.
При вычитании дробных чисел с разными знаками необходимо выполнить преобразование чисел к виду обыкновенных или десятичных дробей.