Разместить заказ
Вы будете перенаправлены на Автор24

Отношения и пропорции

Содержание статьи

Отношение двух чисел

Определение 1

Отношением двух чисел является их частное.

Пример 1
  • отношение $18$ к $3$ может быть записано как:

    $18\div 3=\frac{18}{3}=6$.

  • отношение $5$ к $15$ может быть записано как:

    $5\div 15=\frac{5}{15}=\frac{1}{3}$.

С помощью отношения двух чисел можно показать:

  • во сколько раз одно число превышает другое;
  • какую часть представляет одно число от другого.

При составлении отношения двух чисел в знаменателе дроби записывают то число, с которым проводится сравнение.

Чаще всего такое число следует после слов «по сравнению с ...» или предлога «к ...».

Вспомним основное свойство дроби и применим его к отношению:

Замечание 1

При умножении или делении обоих членов отношения на одно и то же число, отличное от нуля, получаем отношение, которое равно исходному.

Рассмотрим пример, который иллюстрирует использование понятия отношения двух чисел.

Пример 2

Количество осадков в предыдущем месяце составляло $195$ мм, а в текущем месяце – $780$ мм. Во сколько раз увеличилось количество осадков в текущем месяце по сравнению с предыдущим месяцем?

Решение.

Составим отношение количества осадков в текущем месяце к количеству осадков в предыдущем месяце:

$\frac{780}{195}=\frac{780\div 5}{195\div 5}=\frac{156\div 3}{39\div 3}=\frac{52}{13}=4$.

Ответ: количество осадков в текущем месяце в $4$ раза больше, чем в предыдущем.

Пример 3

Найти сколько раз число $1 \frac{1}{2}$ содержится в числе $13 \frac{1}{2}$.

Решение.

$13 \frac{1}{2}\div 1 \frac{1}{2}=\frac{27}{2}\div \frac{3}{2}=\frac{27}{2} \cdot \frac{2}{3}=\frac{27}{3}=9$.

Ответ: $9$ раз.

Готовые работы на аналогичную тему

Понятие пропорции

Определение 2

Пропорцией называется равенство двух отношений:

$a\div b=c\div d$

или

$\frac{a}{b}=\frac{c}{d}$.

Пример 4

$3\div 6=9\div 18$, $5\div 15=9\div 27$, $4\div 2=24\div 12$,

$\frac{8}{2}=\frac{36}{9}$, $\frac{10}{40}=\frac{9}{36}$, $\frac{15}{75}=\frac{1}{5}$.

В пропорции $\frac{a}{b}=\frac{c}{d}$ (или $a:b = с\div d$) числа a и d называются крайними членами пропорции, а числа $b$ и $c$ – средними членами пропорции.

Правильную пропорцию можно преобразовать следующим образом:

Замечание 2

Произведение крайних членов правильной пропорции равно произведению средних членов:

$a \cdot d=b \cdot c$.

Данное утверждение является основным свойством пропорции.

Справедливо и обратное утверждение:

Замечание 3

Если произведение крайних членов пропорции равно произведению ее средних членов, то пропорция правильная.

Замечание 4

Если в правильной пропорции переставить средние члены или крайние члены, то пропорции, которые получатся, также будут правильными.

Пример 5

$6\div 3=18\div 9$, $15\div 5=27\div 9$, $2\div 4=12\div 24$,

$\frac{2}{8}=\frac{9}{36}$, $\frac{40}{10}=\frac{36}{9}$, $\frac{75}{15}=\frac{5}{1}$.

С помощью данного свойства легко из пропорции найти неизвестный член, если известны остальные три:

$a=\frac{b \cdot c}{d}$; $b=\frac{a \cdot d}{c}$; $c=\frac{a \cdot d}{b}$; $d=\frac{b \cdot c}{a}$.

Пример 6

$\frac{6}{a}=\frac{16}{8}$;

$6 \cdot 8=16 \cdot a$;

$16 \cdot a=6 \cdot 8$;

$16 \cdot a=48$;

$a=\frac{48}{16}$;

$a=3$.

Пример 7

$\frac{a}{21}=\frac{8}{24}$;

$a \cdot 24=21 \cdot 8$;

$a \cdot 24=168$;

$a=\frac{168}{24}$;

$a=7$.

Пример 8

Для пошива $7$ платьев понадобилось $21,7$ м шелка. Сколько нужно метров такого же шелка, чтобы пошить $18$ платьев?

Решение.

Пусть $x$ м – количество шелка, необходимого для пошива $18$ платьев. Тогда, по условию:

$7$ платьев – $21,7$ м;

$18$ платьев – $x$ м.

Составим пропорцию:

$\frac{7}{18}=\frac{21,7}{x}$.

Воспользуемся правилом нахождения неизвестного члена пропорции:

$d=\frac{b \cdot c}{a}$;

$x=\frac{18 \cdot 21,7}{7}$;

$x=18 \cdot 3,1$;

$x=55,8$.

Ответ: для пошива 18 платьев понадобится 55,8 м шелка.

Пример 9

$3$ садовника обрезают в день $108$ деревьев. Сколько нужно садовников, чтобы обрезать $252$ дерева?

Решение.

Пусть $x$ – количество садовников, необходимое для обрезки $252$ деревьев.

Тогда, по условию:

$3$ садовника – $108$ деревьев;

$x$ садовников – $252$ дерева.

Составим пропорцию:

$\frac{3}{x}=\frac{108}{252}$.

Воспользуемся правилом нахождения неизвестного члена пропорции:

$b=\frac{a \cdot d}{c}$;

$x=\frac{3 \cdot 252}{108}$;

$x=\frac{252}{36}$;

$x=7$.

Ответ: для обрезки $252$ деревьев потребуется $7$ садовников.

Чаще всего свойства пропорции используют на практике в математических вычислениях в случаях, когда необходимо вычислить значение неизвестного члена пропорции, если известны значения трех остальных членов.

Сообщество экспертов Автор24

Автор этой статьи

Автор статьи

Евгений Николаевич Беляев

Эксперт по предмету «Математика»

Статья предоставлена специалистами сервиса Автор24
Автор24 - это сообщество учителей и преподавателей, к которым можно обратиться за помощью с выполнением учебных работ.
как работает сервис